# rasa_chatbot **Repository Path**: 419822025/rasa_chatbot ## Basic Information - **Project Name**: rasa_chatbot - **Description**: A Chinese task oriented chatbot in IVR(Interactive Voice Response) domain, implement by rasa. This is a demo with toy dataset, more data should be added for performance. - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2018-08-31 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # rasa_chatbot A Chinese task oriented chatbot in IVR(Interactive Voice Response) domain, Implement by rasa nlu and rasa core. This is a demo with toy dataset. ### install dependency: - [follow here](https://github.com/zqhZY/rasa_chatbot/blob/master/INSTALL.md) ### dir tree ``` rasa_chatbot/ ├── data │   ├── mobile_nlu_data.json # rasa nlu train data │   ├── mobile_story.md # rasa core train data │   └── total_word_feature_extractor.dat # mitie word vector feature ├── __init__.py # init file ├── httpserver.py # rasa nlu httpserver ├── bot.py # ivr bot main script. ├── mobile_domain.yml # rasa core domain file ├── mobile_nlu_model_config.json # rasa nlu config file ├── models # directory to save trained models └── README.md # readme file ``` ### train nlu model ```bash python bot.py train-nlu ``` ### train dialogue ```bash python bot.py train-dialogue ``` ### train dialogue in online mode ``` python bot.py online_train ``` ### test Run command below: ```bash python bot.py run ``` Example1: ``` Bot loaded. Type a message and press enter : YOU:你是谁 BOT:您好!,我是机器人小热,很高兴为您服务。 YOU:我想看一下消费情况 BOT:您想查询哪个月的消费? YOU:十月份的 BOT:好,请稍等 BOT:您好,您十月份共消费二十八元。 YOU:好谢谢 BOT:您开心我就开心 BOT:您还想干什么 YOU:没什么了 BOT:Bye, 下次再见 ``` Example2: ``` Bot loaded. Type a message and press enter : YOU:给我看看我上月用了多少话费 BOT:好,请稍等 BOT:您好,您上月共消费二十八元。 BOT:您还想干什么 ``` ### train word vector You can train your own MITIE model using following method: ``` $ git clone https://github.com/mit-nlp/MITIE.git $ cd MITIE/tools/wordrep $ mkdir build $ cd build $ cmake .. $ cmake --build . --config Release $ ./wordrep -e /path/to/your/folder_of_cutted_text_files ``` /path/to/your/folder_of_cutted_text_files above is a directory path in which has word cutted data files to train. This process may cost one or two days.