# DecisionTreeGenerator **Repository Path**: ABCpril/DecisionTreeGenerator ## Basic Information - **Project Name**: DecisionTreeGenerator - **Description**: Generates and visualizes a decision tree model using a training data set by using the ID3 algorithm. Able to test accuracy of the model using test data set. Pruning and gain ratio feature included. - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-10-13 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DecisionTreeGenerator **This application can develop a decision tree from a training data set containing categorical attributes and a class label. In the example below, Outlook, Temperature, Humidity, and Wind are the categorical attributes (inputs). PlayTennis is the class label (output). The objective is to create a decision tree so we can make predictions on what the class label (output) will be, given a set of categorical attribute values (inputs)** ![](images/playTennis_dataset.PNG) **The decision tree below was modeled using the ID3 algorithm.** ![](images/playTennis_tree.PNG)