# 高并发内存池 **Repository Path**: AFmingC/high-concurrency-memory-pool ## Basic Information - **Project Name**: 高并发内存池 - **Description**: 存放项目文档,代码 - **Primary Language**: C++ - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-03-11 - **Last Updated**: 2024-04-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README 本项目实现的是一个高并发的内存池,它的原型是Google的一个开源项目tcmalloc,tcmalloc全称Thread-Caching Malloc,即线程缓存的malloc,实现了高效的多线程内存管理,用于替换系统的内存分配相关函数malloc和free。 tcmalloc的知名度也是非常高的,不少公司都在用它,比如Go语言就直接用它做了自己的内存分配器。  该项目就是把tcmalloc中最核心的框架简化后拿出来,模拟实现出一个mini版的高并发内存池,目的就是学习tcmalloc的精华。  该项目主要涉及C/C++、数据结构(链表、哈希桶)、操作系统内存管理、单例模式、多线程、互斥锁等方面的技术 关键词:池化技术,内存池 定长内存池,后续基础组件。 ![输入图片说明](Snipaste_2024-04-10_11-43-36.jpg) ![输入图片说明](Snipaste_2024-04-10_11-43-41.jpg) malloc本身其实已经很优秀了,但是在并发场景下可能会因为频繁的加锁和解锁导致效率有所降低,而该项目的原型tcmalloc实现的就是一种在多线程高并发场景下更胜一筹的内存池。   在实现内存池时我们一般需要考虑到效率问题和内存碎片的问题,但对于高并发内存池来说,我们还需要考虑在多线程环境下的锁竞争问题。 **高并发内存池主要由以下三个部分构成:** - thread cache: 线程缓存是每个线程独有的,用于小于等于256KB的内存分配,每个线程独享一个thread cache。 - central cache: 中心缓存是所有线程所共享的,当thread cache需要内存时会按需从central cache中获取内存,而当thread cache中的内存满足一定条件时,central cache也会在合适的时机对其进行回收。 - page cache: 页缓存中存储的内存是以页为单位进行存储及分配的,当central cache需要内存时,page cache会分配出一定数量的页分配给central cache,而当central cache中的内存满足一定条件时,page cache也会在合适的时机对其进行回收,并将回收的内存尽可能的进行合并,组成更大的连续内存块,缓解内存碎片的问题。 **进一步说明:** -   每个线程都有一个属于自己的thread cache,也就意味着线程在thread cache申请内存时是不需要加锁的,而一次性申请大于256KB内存的情况是很少的,因此大部分情况下申请内存时都是无锁的,这也就是这个高并发内存池高效的地方。 -   每个线程的thread cache会根据自己的情况向central cache申请或归还内存,这就避免了出现单个线程的thread cache占用太多内存,而其余thread cache出现内存吃紧的问题。 -   多线程的thread cache可能会同时找central cache申请内存,此时就会涉及线程安全的问题,因此在访问central cache时是需要加锁的,但central cache实际上是一个哈希桶的结构,只有当多个线程同时访问同一个桶时才需要加锁,所以这里的锁竞争也不会很激烈。 - thread cache主要解决锁竞争的问题,每个线程独享自己的thread cache,当自己的thread cache中有内存时该线程不会去和其他线程进行竞争,每个线程只要在自己的thread cache申请内存就行了。 -   central cache主要起到一个居中调度的作用,每个线程的thread cache需要内存时从central cache获取,而当thread cache的内存多了就会将内存还给central cache,其作用类似于一个中枢,因此取名为中心缓存。 -   page cache就负责提供以页为单位的大块内存,当central cache需要内存时就会去向page cache申请,而当page cache没有内存了就会直接去找系统,也就是直接去堆上按页申请内存块。 ![输入图片说明](Snipaste_2024-04-08_09-40-48.jpg) **threadcache整体设计:** - 定长内存池只支持固定大小内存块的申请释放,因此定长内存池中只需要一个自由链表管理释放回来的内存块。 - 现在我们要支持申请和释放不同大小的内存块,那么我们就需要多个自由链表来管理释放回来的内存块,因此thread cache实际上一个哈希桶结构,每个桶中存放的都是一个自由链表。 - thread cache支持小于等于256KB内存的申请,如果我们将每种字节数的内存块都用一个自由链表进行管理的话,那么此时我们就需要20多万个自由链表,光是存储这些自由链表的头指针就需要消耗大量内存,这显然是得不偿失的。 - 这时我们可以选择做一些平衡的牺牲,让这些字节数按照某种规则进行对齐,例如我们让这些字节数都按照8字节进行向上对齐,那么thread cache的结构就是下面这样的,此时当线程申请1~8字节的内存时会直接给出8字节,而当线程申请9~16字节的内存时会直接给出16字节,以此类推。 ![输入图片说明](Snipaste_2024-04-08_09-41-51.jpg) - central cache与thread cache有两个明显不同的地方,首先,thread cache是每个线程独享的,而central cache是所有线程共享的,因为每个线程的thread cache没有内存了都会去找central cache,因此在访问central cache时是需要加锁的。 - 但central cache在加锁时并不是将整个central cache全部锁上了,central cache在加锁时用的是桶锁,也就是说每个桶都有一个锁。此时只有当多个线程同时访问central cache的同一个桶时才会存在锁竞争,如果是多个线程同时访问central cache的不同桶就不会存在锁竞争。 - central cache与thread cache的第二个不同之处就是,thread cache的每个桶中挂的是一个个切好的内存块,而central cache的每个桶中挂的是一个个的span。 - 每个span管理的都是一个以页为单位的大块内存,每个桶里面的若干span是按照双链表的形式链接起来的,并且每个span里面还有一个自由链表,这个自由链表里面挂的就是一个个切好了的内存块,根据其所在的哈希桶这些内存块被切成了对应的大小。 ![输入图片说明](Snipaste_2024-04-08_10-09-19.jpg) - page cache与central cache一样,它们都是哈希桶的结构,并且page cache的每个哈希桶中里挂的也是一个个的span,这些span也是按照双链表的结构链接起来的。 - 首先,central cache的映射规则与thread cache保持一致,而page cache的映射规则与它们都不相同。page cache的哈希桶映射规则采用的是直接定址法,比如1号桶挂的都是1页的span,2号桶挂的都是2页的span,以此类推。 - 其次,central cache每个桶中的span被切成了一个个对应大小的对象,以供thread cache申请。而page cache当中的span是没有被进一步切小的,因为page cache服务的是central cache,当central cache没有span时,向page cache申请的是某一固定页数的span,而如何切分申请到的这个span就应该由central cache自己来决定。 ![输入图片说明](Snipaste_2024-04-08_10-37-35.jpg)