# RLS-RTMDNet **Repository Path**: AI52CV/RLS-RTMDNet ## Basic Information - **Project Name**: RLS-RTMDNet - **Description**: 视觉跟踪 Recursive Least-Squares Estimator-Aided Online Learning for Visual Tracking https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_Recursive_Least-Squares_Estimator-Aided_Online_Learning_for_Visual_Tracking_CVPR_2020_paper.html 代码原地址:https://github.com/Amgao/RLS-RTMDNet - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2021-04-06 - **Last Updated**: 2021-04-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## RLS-RTMDNet Code and raw result files of our CVPR2020 oral paper "[Recursive Least-Squares Estimator-Aided Online Learning for Visual Tracking](https://openaccess.thecvf.com/content_CVPR_2020/html/Gao_Recursive_Least-Squares_Estimator-Aided_Online_Learning_for_Visual_Tracking_CVPR_2020_paper.html)" Created by [Jin Gao](http://www.nlpr.ia.ac.cn/users/gaojin/) ### Introduction RLS-RTMDNet is dedicated to improving online tracking part of RT-MDNet ([project page](http://cvlab.postech.ac.kr/~chey0313/real_time_mdnet/) and [paper](https://arxiv.org/pdf/1808.08834.pdf)) based on our proposed recursive least-squares estimator-aided online learning method. ### Citation If you're using this code in a publication, please cite our paper. @InProceedings{Gao_2020_CVPR, author = {Gao, Jin and Hu, Weiming and Lu, Yan}, title = {Recursive Least-squares Estimator-aided Online Learning for Visual Tracking}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2020} } ### System Requirements This code is tested on 64 bit Linux (Ubuntu 16.04 LTS) with the following Anaconda environment: >> * PyTorch (= 1.2.0) >> * Python (= 3.7.4) ### Online Tracking **Pretrained Model** >> * The off-the-shelf pretrained model in RT-MDNet is used for our testing: [RT-MDNet-ImageNet-pretrained](https://www.dropbox.com/s/lr8uft05zlo21an/rt-mdnet.pth?dl=0). **Demo** >> * 'Run.py' for OTB and UAV123 >> * 'python_RLS_RTMDNet.py' for VOT16/17.