# doubleheadsrcnn **Repository Path**: AI52CV/doubleheadsrcnn ## Basic Information - **Project Name**: doubleheadsrcnn - **Description**: Rethinking Classification and Localization for Object Detection 代码原地址:https://github.com/wuyuebupt/doubleheadsrcnn - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2021-04-06 - **Last Updated**: 2021-04-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Double Heads RCNN This is the implementation of CVPR 2020 paper "Rethinking Classification and Localization for Object Detection". The code is based on the [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark). If the paper and code helps you, we would appreciate your kindly citations of our paper. ``` @inproceedings{wu2020rethinking, title={Rethinking Classification and Localization for Object Detection}, author={Wu, Yue and Chen, Yinpeng and Yuan, Lu and Liu, Zicheng and Wang, Lijuan and Li, Hongzhi and Fu, Yun}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, year={2020} } ``` ### Contents 1. [Installation](#installation) 2. [Models](#models) 2. [Running](#running) ### Installation Follow the [maskrcnn-benchmark](./OLD_README.md) to install code and set up the dataset. A docker image is also provided ``` docker pull yuewudocker/pytorchdoubleheads ``` If you use this docker, you can run the ./cmd_install.sh script for the installation. Most experiments are done under the following environments: ``` PyTorch version: 1.0.0 OS: Ubuntu 16.04.3 LTS Python version: 3.6 CUDA runtime version: 9.0.176 Nvidia driver version: 410.78 GPU: 4x Tesla P100-PCIE-16GB ``` ### Models Results on the COCO 2017 validation set: | Backbone | AP | AP_0.5 | AP_0.7 | AP_s | AP_m | AP_l | Link | | -------------- | ------ | ---- | ---- | ---- | ---- | ---- | ---- | | ResNet-50-FPN | 40.3 | 60.3 | 44.2 | 22.4 | 43.3 | 54.3 | [model](https://drive.google.com/open?id=1KnRoyJQjS9rQUTCFEm54AIsUy2qbZTK_) | | ResNet-101-FPN | 41.9 | 62.4 | 45.9 | 23.9 | 45.2 | 55.8 | [model](https://drive.google.com/open?id=18CMdq4U9TZOCz7SSj-3c27xkfqO_gvwP) | Results on COCO 2017 test-dev: | Backbone | AP | AP_0.5 | AP_0.7 | AP_s | AP_m | AP_l | Link | | -------------- | ------ | ---- | ---- | ---- | ---- | ---- | ---- | | ResNet-101-FPN | 42.3 | 62.8 | 46.3 | 23.9 | 44.9 | 54.3 | [bbox](https://drive.google.com/open?id=1jBQ2S_eDUyEJplZtofAAHOvkqo4UmlpA) | ### Running Use config files in ./configs/double_heads/ for Training and Testing. #### Run Inference Download models to the ./models directory. Then use the following script: ``` sh cmd_test.sh ``` You need modify the data path: ``` export DATA_DIR=/path/to/datafolder/ ``` #### Run Training You can use the ./cmd_train.sh script to train with 4 gpus. You have to modify following paths: ``` export OUTPUT_DIR=/path/to/modelfolder/ export PRETRAIN_MODEL=/path/to/pretrained/model export DATA_DIR=/path/to/datafolder/ ```