# Autoencoders **Repository Path**: AIsuming/Autoencoders ## Basic Information - **Project Name**: Autoencoders - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2022-03-07 - **Last Updated**: 2022-03-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Autoencoders [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/nathanhubens/Autoencoders) **Autoencoders (AE)** are neural networks that aims to copy their inputs to their outputs. They work by compressing the input into a latent-space representation, and then reconstructing the output from this representation. This kind of network is composed of two partsĀ : 1. **Encoder**: This is the part of the network that compresses the input into a latent-space representation. It can be represented by an encoding function _h=f(x)_. 2. **Decoder**: This part aims to reconstruct the input from the latent space representation. It can be represented by a decoding function _r=g(h)_. drawing This notebook show the implementation of five types of autoencoders : * Vanilla Autoencoder * Multilayer Autoencoder * Convolutional Autoencoder * Regularized Autoencoder * Variational Autoencoder The explanation of each (except VAE) can be found [here](https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f)