# VQGAN-Compression **Repository Path**: ATM006/VQGAN-Compression ## Basic Information - **Project Name**: VQGAN-Compression - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: add-UIGC - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-23 - **Last Updated**: 2025-01-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Introduction Official Pytorch implementation for image compression based on VQGAN model includes: * Finetuned-GAN:[Extreme Image Compression using Fine-tuned VQGAN Models](https://ieeexplore.ieee.org/document/10533792), DCC 2024, in [this folder](./Finetuned-VQGAN) * UIGC:[Unifying Generation and Compression: Ultra-low bitrate Image Coding Via Multi-stage Transformer](https://ieeexplore.ieee.org/abstract/document/10687549), ICME 2024, in [this floder](./UIGC) # :heart: Acknowledgement The implementation is based on [VQGAN](https://github.com/CompVis/taming-transformers). # :clipboard: Citation If you find this work useful for your research, please cite: ``` @inproceedings{mao2024extreme, title={Extreme image compression using fine-tuned vqgans}, author={Mao, Qi and Yang, Tinghan and Zhang, Yinuo and Wang, Zijian and Wang, Meng and Wang, Shiqi and Jin, Libiao and Ma, Siwei}, booktitle={2024 Data Compression Conference (DCC)}, pages={203--212}, year={2024}, organization={IEEE} } @inproceedings{xue2024unifying, title={Unifying Generation and Compression: Ultra-low bitrate Image Coding Via Multi-stage Transformer}, author={Xue, Naifu and Mao, Qi and Wang, Zijian and Zhang, Yuan and Ma, Siwei}, booktitle={2024 IEEE International Conference on Multimedia and Expo (ICME)}, pages={1-6}, year={2024}, organization={IEEE} } ```