# MBMD **Repository Path**: AlanWater/MBMD ## Basic Information - **Project Name**: MBMD - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-28 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README If you fail to install and run this tracker, please email me () # Introduction This repository includes tensorflow code of **MBMD** (MobileNet-based tracking by detection algorithm) for VOT2018 Long-Term Challenge. The corresponding arxiv paper has been drafted on Arxiv. [Learning regression and verification networks for long-term visual tracking](https://arxiv.org/abs/1809.04320). Yunhua Zhang, Dong Wang, Lijun Wang, Jinqing Qi, Huchuan Lu # Prerequisites python 2.7 ubuntu 14.04 cuda-8.0 cudnn-6.0.21 [Tensorflow-1.3-gpu](https://mirrors.tuna.tsinghua.edu.cn/tensorflow/linux/gpu/tensorflow_gpu-1.3.0rc0-cp27-none-linux_x86_64.whl) NVIDIA TITAN X GPU # Pretrained model The bounding box regression's architecture is MobileNet, and the verifier's architecture is VGGM. The pre-trained model can be downloaded at https://drive.google.com/open?id=1g3aMRi6CWK88FOEYoQjqs61fY6QvGW1Z. Then you should copy the two files to the folder of our code. # Integrate into VOT-2018 The interface for integrating the tracker into the vot evaluation tool kit is implemented in the module `python_long_MBMD.py`. The script `tracker_MBMD.m` is needed to be copied to vot-tookit. # CPU manner If you want to run this code on CPU, you need to just set os.environ \["CUDA_VISIBLE_DEVICES"\]="" in the begin of `python_long_MBMD.py`