# NanoNet
**Repository Path**: BitTeam_Lay/NanoNet
## Basic Information
- **Project Name**: NanoNet
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2021-05-06
- **Last Updated**: 2021-05-06
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# NanoNET
[](https://opensource.org/licenses/MIT)
[](https://travis-ci.org/freude)
[](https://github.com/freude/NanoNet/actions?query=workflow%3A%22Nanonet+tests%22)
[](https://coveralls.io/github/freude/NanoNet?branch=master)
[](https://codecov.io/gh/freude/NanoNet)
[](https://www.codefactor.io/repository/github/freude/nanonet/overview/master)
[](https://app.codacy.com/app/freude/NanoNet?utm_source=github.com&utm_medium=referral&utm_content=freude/NanoNet&utm_campaign=Badge_Grade_Dashboard)
[](https://badge.fury.io/py/nano-net)
## Introduction
The project NanoNET (Nanoscale Non-equilibrium Electron Transport) represents an extendable Python framework for
the electronic structure computations based on
the tight-binding method. The code can deal with both finite
and periodic systems translated in one, two or three dimensions.
All computations can be governed by means of the python application programming interface (pyAPI) or the command line interface (CLI).
## Getting Started
### Requirements
`NanoNet` requires `openmpi` to be installed in the system:
Ubuntu
```bash
sudo apt-get install libopenmpi-dev
```
MacOS
```bash
brew install open-mpi
```
### Installing from PiPy
The easiest way to install `NanoNet` without tests is from the PiPy repository:
```bash
pip install nano-net
```
### Installing from sources
The source distribution can be obtained from GitHub:
```bash
git clone https://github.com/freude/NanoNet.git
cd NanoNet
```
All other dependencies can be installed at once by invoking the following command
from within the source directory:
```bash
pip install -r requirements.txt
```
In order to install the package `Nanonet` just invoke
the following line in the bash from within the source directory:
```
pip install .
```
### Running the tests
If the source distribution is available, all tests may be run by invoking the following command in the root directory:
```
nosetests --with-doctest
```
### Examples of usage
- [Atomic chain](https://github.com/freude/NanoNet/blob/master/jupyter_notebooks/atom_chains.ipynb)
- [Huckel model](https://github.com/freude/NanoNet/blob/master/jupyter_notebooks/Hukel_model.ipynb)
- [Bulk silicon](https://github.com/freude/NanoNet/blob/master/jupyter_notebooks/bulk_silicon.ipynb)
- [Bulk silicon - initialization via an input file](https://github.com/freude/NanoNet/blob/master/jupyter_notebooks/bulk_silicon_with_input_file.ipynb)
- [Silicon nanowire](https://github.com/freude/NanoNet/blob/master/jupyter_notebooks/silicon_nanowire.ipynb)
### Python interface
Below is a short example demonstrating usage of the `tb` package.
More illustrative examples can be found in the ipython notebooks
in the directory `jupyter_notebooks` inside the source directory.
Below we demonstrate band structure computation for a nanoribbon with four
atoms per unit cell:
--A-- | --A-- | --A-- | --A--0. If the package is properly installed, the work starts with the import of all necessary modules: ```python import numpy as np import matplotlib.pyplot as plt import nanonet.tb as tb from nanonet.negf.recursive_greens_functions import recursive_gf from nanonet.negf.greens_functions import surface_greens_function ``` 1. First, one needs to specify atomic species and corresponding basis sets. We assume that each atom has one s-type atomic orbital with energy -1 eV. It is also possible to use predefined basis sets as is shown in examples in the ipython notebooks. ```python orb = tb.Orbitals('A') orb.add_orbital(title='s', energy=-1.0) ``` 2. Set tight-binding parameters: ```python tb.set_tb_params(PARAMS_A_A={"ss_sigma": 1.0}) ``` 3. Define atomic coordinates for the unit cell: ```python input_file = """4 Nanostrip A1 0.0 0.0 0.0 A2 0.0 1.0 0.0 A3 0.0 2.0 0.0 A4 0.0 3.0 0.0 """ ``` 4. Make instance of the Hamiltonian class and specify periodic boundary conditions if any: ```python h = tb.Hamiltonian(xyz=input_file, nn_distance=1.4) h.initialize() h.set_periodic_bc([[0, 0, 1.0]]) h_l, h_0, h_r = h.get_hamiltonians() ``` 5. Compute DOS and transmission using Green's functions: ```python energy = np.linspace(-5.0, 5.0, 150) dos = np.zeros((energy.shape[0])) tr = np.zeros((energy.shape[0])) for j, E in enumerate(energy): # compute surface Green's functions L, R = surface_greens_function(E, h_l, h_0, h_r) # recursive Green's functions g_trans, grd, grl, gru, gr_left = recursive_gf(E, [h_l], [h_0 + L + R], [h_r]) # compute DOS dos[j] = np.real(np.trace(1j * (grd[0] - grd[0].conj().T))) # compute left-lead coupling gamma_l = 1j * (L - L.conj().T) # compute right-lead coupling gamma_r = 1j * (R - R.conj().T) # compute transmission tr[j] = np.real(np.trace(gamma_l @ g_trans @ gamma_r @ g_trans.conj().T))) ``` 6. Plot DOS and transmission spectrum: ```python fig, ax = plt.subplots(1, 2) ax[0].plot(energy, dos, 'k') ax[0].set_ylabel(r'DOS (a.u)') ax[0].set_xlabel(r'Energy (eV)') ax[1].plot(energy, tr, 'k') ax[1].set_ylabel(r'Transmission (a.u.)') ax[1].set_xlabel(r'Energy (eV)') fig.tight_layout() plt.show() ``` 7. Done. The result will appear on the screen.  ## Authors - Mykhailo V. Klymenko (mike.klymenko@rmit.edu.au) - Jackson S. Smith - Jesse A. Vaitkus - Jared H. Cole ## License This project is licensed under the MIT License - see the [LICENSE.md](LICENSE.md) file for details ## Acknowledgments We acknowledge support of the RMIT University, Australian Research Council through grant CE170100026, and National Computational Infrastructure, which is supported by the Australian Government. ## References [M.V. Klymenko, J.A. Vaitkus, J.S. Smith, and J.H. Cole, "NanoNET: An extendable Python framework for semi-empirical tight-binding models," *Computer Physics Communications*, Volume 259, 107676 (2021)](https://doi.org/10.1016/j.cpc.2020.107676)