# EventSAM **Repository Path**: Bryan_Jiang/EventSAM ## Basic Information - **Project Name**: EventSAM - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-03-26 - **Last Updated**: 2024-04-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

English | 简体中文

Segment Any Events via Weighted Adaptation of Pivotal Tokens

Zhiwen Chen1   Zhiyu Zhu2   Yifan Zhang2   Junhui Hou2   Guangming Shi1   Jinjian Wu1
1Xidian University    2City University of Hong Kong   

## 项目概览 这个项目是Segment Any Events via Weighted Adaptation of Pivotal Tokens [[`📕论文`](https://arxiv.org/abs/2312.16222)] 的官方代码。 本文深入探讨了将SAM分割模型迁移到事件域的挑战,其目标是在事件域内实现鲁棒和通用的目标分割。
## 项目开始 ### 安装依赖项 我们的代码需要 `python>=3.8`, `pytorch>=1.7` 和 `torchvision>=0.8`等依赖项. 请同时安装PyTorch和TorchVision依赖项。 Clone the repository locally: ``` pip install git+https://github.com/happychenpipi/EventSAM.git ``` Install the packages: ``` cd EventSAM pip install -r requirements.txt ``` ### 数据准备 在这项工作中,我们从当前可用的像素级对齐数据集中收集了一个大规模的RGB-Event数据集,用于以事件的分割 ([VisEvent](https://sites.google.com/view/viseventtrack/) 和 [COESOT](https://github.com/Event-AHU/COESOT)), 命名为 RGBE-SEG. 为了进一步探讨我们方法的零样本泛化性能, 我们在MV[MVSEC](https://daniilidis-group.github.io/mvsec/) 数据集上显示了更多的分割结果. 请下载这些数据集并把它们放在./data文件夹下. Format of RGBE_SEG/MVSEC datasets: ```Shell ├── RGBE_SEG dataset ├── Training Subset (473 sequences) ├── dvSave-2021_09_01_06_59_10 ├── rgb_image ├── event_image ├── ... ├── Testing Subset (108 sequences) ├── dvSave-2021_07_30_11_04_12 ├── rgb_image ├── event_image ├── ... ``` ## 训练 首先下载相应的SAM预训练权重 (e.g. ViT-B SAM model) [SAM](https://github.com/facebookresearch/segment-anything/tree/main). 然后,我们运行RGB-Event知识蒸馏模型: ``` python ./event_encoder/train.py ``` ## 评估 预测事件表征的分割掩码: ``` python ./evaluate/predict_mask.py ``` 计算分割掩码的性能指标: ``` python ./evaluate/calculate_metric.py ``` ## 可视化
## EventSAM与LLM整合 为了进一步验证我们的EventSAM强大的零样本目标识别能力.我们将其与整合到视觉语言对象分割框架中 [LISA](https://github.com/dvlab-research/LISA). 通过这种方式,我们可以进一步解锁SAM中丰富语义知识,用于事件数据的交互式通用目标分割。这里是一些可视化实例:
## 致谢 Thanks to [VisEvent](https://sites.google.com/view/viseventtrack/), [COESOT](https://github.com/Event-AHU/COESOT), [MVSEC](https://daniilidis-group.github.io/mvsec/) datasets, [SAM](https://github.com/facebookresearch/segment-anything/tree/main) and [LISA](https://github.com/dvlab-research/LISA). ## 联系 Feedbacks and comments are welcome! Feel free to contact us via [zhiwen.chen@stu.xidian.edu.cn](zhiwen.chen@stu.xidian.edu.cn). ## 引用EventSAM If you use EventSAM in your research, please use the following BibTeX entry. ``` @article{chen2023segment, title={Segment Any Events via Weighted Adaptation of Pivotal Tokens}, author={Chen, Zhiwen and Zhu, Zhiyu and Zhang, Yifan and Hou, Junhui and Shi, Guangming and Wu, Jinjian}, journal={arXiv preprint arXiv:2312.16222}, year={2023} } ```