# evsegnet_pytorch **Repository Path**: Bryan_Jiang/evsegnet_pytorch ## Basic Information - **Project Name**: evsegnet_pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-04-25 - **Last Updated**: 2024-04-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Ev-SegNet [![Ev-SegNet](utils/image.png)](https://youtu.be/YQXBjWUSiaA) This work proses an approach for learning semantic segmentation from only event-based information (event-based cameras). For more details, here is the [Paper](https://drive.google.com/file/d/1eTX6GXy5qP9I4PWdD4MkRRbEtfg65XCr/view?usp=sharing) **[This repository contains the basic and the core implementation and data from the paper. It will be updated with more detail with the time]** # Requirements * Python 2.7+ * Tensorflow 1.11 * Opencv * Keras * Imgaug * Sklearn ## Citing Ev-SegNet If you find EV-SegNet useful in your research, please consider citing: ``` @inproceedings{alonso2019EvSegNet, title={EV-SegNet: Semantic Segmentation for Event-based Cameras}, author={Alonso, I{\~n}igo and Murillo, Ana C}, booktitle={IEEE International Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)}, year={2019} } ``` ## Dataset Our dataset is a subset of the [DDD17: DAVIS Driving Dataset](http://sensors.ini.uzh.ch/news_page/DDD17.html). This original dataset do not provide any semantic segmentation label, we provide them as well as some modification of the event images. [Download it here](https://drive.google.com/open?id=1Ug6iZc7WYQWCklxwcemCeyw3CPyuuxJf) The semantic segmentation labels of the data are: flat:0, construction+sky:1, object:2, nature:3, human:4, vehicle:5, ignore_labels:255 ## Replicate results For testing the pre-trained model just execute: ``` python train_eager.py --epochs 0 ``` ## Train from scratch ``` python train_eager.py --epochs 500 --dataset path_to_dataset --model_path path_to_model --batch_size 8 ``` Where [path_to_dataset] is the path to the downloaded dataset (uncompressed) and [path_to_model] is the path where the weights are going to be saved ## Get new labels First, download [this folder](https://drive.google.com/drive/folders/1NjTGAoSCpYw_l89l1BdulJi0B_qIIiin?usp=sharing) and copy it into the weights folder of this repository (so that you have weights/cityscapes_grasycale folder). Then execute this script specifying the grayscale image path to obtain the labels from. ``` python get_segmentation.py --image_path ./image.png --weights/cityscapes_grayscale ``` # evsegnet_pytorch