# ATI **Repository Path**: ByteDance/ATI ## Basic Information - **Project Name**: ATI - **Description**: Official implementation of ATI: Any Trajectory Instruction for Controllable Video Generation. https://arxiv.org/pdf/2505.22944 - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-06-01 - **Last Updated**: 2025-09-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ATI: Any Trajectory Instruction for Controllable Video Generation
[![arXiv](https://img.shields.io/badge/arXiv%20paper-2505.22944-b31b1b.svg)](https://arxiv.org/pdf/2505.22944)  [![project page](https://img.shields.io/badge/Project_page-ATI-green)](https://anytraj.github.io/) 
> [**ATI: Any Trajectory Instruction for Controllable Video Generation**](https://anytraj.github.io/)
> [Angtian Wang](https://angtianwang.github.io/), [Haibin Huang](https://brotherhuang.github.io/), Jacob Zhiyuan Fang, [Yiding Yang](https://ihollywhy.github.io/), [Chongyang Ma](http://www.chongyangma.com/) >
Intelligent Creation Team, ByteDance
**Highlight: ATI motion transfer tools + demo is added. Scroll down to see the updates** [![Watch the video](assets/thumbnail.jpg)](https://youtu.be/76jjPT0f8Hs) This is the repo for Wan2.1 ATI (Any Trajectory Instruction for Controllable Video Generation), a trajectory-based motion control framework that unifies object, local and camera movements in video generation. This repo is based on [Wan2.1 offical implementation](https://github.com/Wan-Video/Wan2.1). Compared with the original Wan2.1. We add the following files: - wan/modules/motion_patch.py | Trajectory instruction kernal module - wan/utils/motion.py | Inference dataloader utils - tools/plot_user_inputs.py | Visualizer for user input trajectory - tools/visualize_trajectory.py | Visualizer for generated video - tools/trajectory_editor/ | Interactive trajectory editor - tools/get_track_from_videos.py | Motion extraction tools for ATI motion transfer - examples/ | Test examples - run_example.sh | Easy launch script We modified the following files: - wan/image2video.py | Add blocks to load and parse trajectory #L256 - wan/configs/__init__.py | Config the ATI etc. - generate.py | Add an entry to load yaml format inference examples ## Community Works ### ComfyUI Thanks for Kijai develop the ComfyUI nodes for ATI: [https://github.com/kijai/ComfyUI-WanVideoWrapper](https://github.com/kijai/ComfyUI-WanVideoWrapper) FP8 quant Huggingface Model: [https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan2_1-I2V-ATI-14B_fp8_e4m3fn.safetensors](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan2_1-I2V-ATI-14B_fp8_e4m3fn.safetensors) ### Guideline Guideline by Benji: [https://www.youtube.com/watch?v=UM35z2L1XbI](https://www.youtube.com/watch?v=UM35z2L1XbI) ## Install ATI requires a same environment as offical Wan 2.1. Follow the instruction of INSTALL.md (Wan2.1). ``` git clone https://github.com/bytedance/ATI.git cd ATI ``` Install packages ``` pip install . ``` First you need to download the 14B original model of Wan2.1. ``` huggingface-cli download Wan-AI/Wan2.1-I2V-14B-480P --local-dir ./Wan2.1-I2V-14B-480P ``` Then download ATI-Wan model from our huggingface repo. ``` huggingface-cli download bytedance-research/ATI --local-dir ./Wan2.1-ATI-14B-480P ``` Finally, copy VAE, T5 and other misc checkpoint from origin Wan2.1 folder to ATI checkpoint location ``` cp ./Wan2.1-I2V-14B-480P/Wan2.1_VAE.pth ./Wan2.1-ATI-14B-480P/ cp ./Wan2.1-I2V-14B-480P/models_t5_umt5-xxl-enc-bf16.pth ./Wan2.1-ATI-14B-480P/ cp ./Wan2.1-I2V-14B-480P/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth ./Wan2.1-ATI-14B-480P/ cp -r ./Wan2.1-I2V-14B-480P/xlm-roberta-large ./Wan2.1-ATI-14B-480P/ cp -r ./Wan2.1-I2V-14B-480P/google ./Wan2.1-ATI-14B-480P/ ``` ## Run We provide a demo sript to run ATI. ``` bash run_example.sh -p examples/test.yaml -c ./Wan2.1-ATI-14B-480P -o samples ``` where `-p` is the path to the config file, `-c` is the path to the checkpoint, `-o` is the path to the output directory, `-g` defines the number of gpus to use (if unspecificed, all avalible GPUs will be used; if `1` is given, will run on single process mode). Once finished, you will expect to fine: - `samples/outputs` for the raw output videos. - `samples/images_tracks` shows the input image togather with the user specified trajectories. - `samples/outputs_vis` shows the output videos togather with the user specified trajectories. Expected results:
Input Image & Trajectory Generated Videos (Superimposed Trajectories)
Image 0 Image 0
Image 1 Image 1
Image 2 Image 2
Image 3 Image 3
Image 4 Image 4
Image 5 Image 5
## Motion Transfer ![Motion Transfer](assets/MotionTransfer.jpg) ATI can mimic a video by extracting its motion dynamics along with its first-frame image. Moreover, by leveraging powerful image-editing tools, it also enables "video-editing" capabilities. First, extract motions from videos using the following script: ``` python3 tools/get_track_from_videos.py --source_folder examples/motion_transfer/ --save_folder samples_motion_transfer/ ``` Then run ATI inference ``` bash run_example.sh -p samples_motion_transfer/test.yaml -c ./Wan2.1-ATI-14B-480P -o outputs_motion_transfer ``` Expected result
Reference Video (for Extracting Motion) First Frame Image Generated Video
Motion Transfer Video Motion Transfer Image Motion Transfer Output
## Create You Own Trajectory We provide an interactive tool that allow users to draw and edit trajectories on their images. Important note: **app.py** should only be run on **localhost**, as running it on a remote server may pose security risks. 1. First run: ``` cd tools/trajectory_editor python3 app.py ``` then open this url [localhost:5000](http://localhost:5000/) in the browser. 2. Get the interface shown below, then click **Choose File** to open a local image. ![Interface Screenshot](assets/editor0.PNG) 3. Available trajectory functions: ![Trajectory Functions](assets/editor1.PNG) a. **Free Trajectory**: Click and then drag with the mouse directly on the image. b. **Circular (Camera Control)**: - Place a circle on the image, then drag to set its size for frame 0. - Place a few (3–4 recommended) track points on the circle. - Drag the radius control to achieve zoom-in/zoom-out effects. c. **Static Point**: A point that remains stationary over time. *Note:* Pay attention to the progress bar in the box to control motion speed. ![Progress Control](assets/editor2.PNG) 4. **Trajectory Editing**: Select a trajectory here, then delete, edit, or copy it. In edit mode, drag the trajectory directly on the image. The selected trajectory is highlighted by color. ![Trajectory Editing](assets/editor3.PNG) 5. **Camera Pan Control**: Enter horizontal (X) or vertical (Y) speed (pixels per frame). Positive X moves right; negative X moves left. Positive Y moves down; negative Y moves up. Click **Add to Selected** to apply to the current trajectory, or **Add to All** to apply to all trajectories. The selected points will gain a constant pan motion on top of their existing movement. ![Camera Pan Control](assets/editor4.PNG) 6. **Important:** After editing, click **Store Tracks** to save. Each image (not each trajectory) must be saved separately after drawing all trajectories. ![Store Tracks](assets/editor5.PNG) 7. Once all edits are complete, locate the `videos_example` folder in the **Trajectory Editor**. ## Citation Please cite our paper if you find our work useful: ``` @article{wang2025ati, title={{ATI}: Any Trajectory Instruction for Controllable Video Generation}, author={Wang, Angtian and Huang, Haibin and Fang, Zhiyuan and Yang, Yiding, and Ma, Chongyang} journal={arXiv preprint}, volume={arXiv:2505.22944}, year={2025} } ```