# ATI
**Repository Path**: ByteDance/ATI
## Basic Information
- **Project Name**: ATI
- **Description**: Official implementation of ATI: Any Trajectory Instruction for Controllable Video Generation. https://arxiv.org/pdf/2505.22944
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-06-01
- **Last Updated**: 2025-09-26
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# ATI: Any Trajectory Instruction for Controllable Video Generation
[](https://arxiv.org/pdf/2505.22944)
[](https://anytraj.github.io/)
> [**ATI: Any Trajectory Instruction for Controllable Video Generation**](https://anytraj.github.io/)
> [Angtian Wang](https://angtianwang.github.io/), [Haibin Huang](https://brotherhuang.github.io/), Jacob Zhiyuan Fang, [Yiding Yang](https://ihollywhy.github.io/), [Chongyang Ma](http://www.chongyangma.com/)
>
Intelligent Creation Team, ByteDance
**Highlight: ATI motion transfer tools + demo is added. Scroll down to see the updates**
[](https://youtu.be/76jjPT0f8Hs)
This is the repo for Wan2.1 ATI (Any Trajectory Instruction for Controllable Video Generation), a trajectory-based motion control framework that unifies object, local and camera movements in video generation. This repo is based on [Wan2.1 offical implementation](https://github.com/Wan-Video/Wan2.1).
Compared with the original Wan2.1. We add the following files:
- wan/modules/motion_patch.py | Trajectory instruction kernal module
- wan/utils/motion.py | Inference dataloader utils
- tools/plot_user_inputs.py | Visualizer for user input trajectory
- tools/visualize_trajectory.py | Visualizer for generated video
- tools/trajectory_editor/ | Interactive trajectory editor
- tools/get_track_from_videos.py | Motion extraction tools for ATI motion transfer
- examples/ | Test examples
- run_example.sh | Easy launch script
We modified the following files:
- wan/image2video.py | Add blocks to load and parse trajectory #L256
- wan/configs/__init__.py | Config the ATI etc.
- generate.py | Add an entry to load yaml format inference examples
## Community Works
### ComfyUI
Thanks for Kijai develop the ComfyUI nodes for ATI:
[https://github.com/kijai/ComfyUI-WanVideoWrapper](https://github.com/kijai/ComfyUI-WanVideoWrapper)
FP8 quant Huggingface Model: [https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan2_1-I2V-ATI-14B_fp8_e4m3fn.safetensors](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan2_1-I2V-ATI-14B_fp8_e4m3fn.safetensors)
### Guideline
Guideline by Benji: [https://www.youtube.com/watch?v=UM35z2L1XbI](https://www.youtube.com/watch?v=UM35z2L1XbI)
## Install
ATI requires a same environment as offical Wan 2.1. Follow the instruction of INSTALL.md (Wan2.1).
```
git clone https://github.com/bytedance/ATI.git
cd ATI
```
Install packages
```
pip install .
```
First you need to download the 14B original model of Wan2.1.
```
huggingface-cli download Wan-AI/Wan2.1-I2V-14B-480P --local-dir ./Wan2.1-I2V-14B-480P
```
Then download ATI-Wan model from our huggingface repo.
```
huggingface-cli download bytedance-research/ATI --local-dir ./Wan2.1-ATI-14B-480P
```
Finally, copy VAE, T5 and other misc checkpoint from origin Wan2.1 folder to ATI checkpoint location
```
cp ./Wan2.1-I2V-14B-480P/Wan2.1_VAE.pth ./Wan2.1-ATI-14B-480P/
cp ./Wan2.1-I2V-14B-480P/models_t5_umt5-xxl-enc-bf16.pth ./Wan2.1-ATI-14B-480P/
cp ./Wan2.1-I2V-14B-480P/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth ./Wan2.1-ATI-14B-480P/
cp -r ./Wan2.1-I2V-14B-480P/xlm-roberta-large ./Wan2.1-ATI-14B-480P/
cp -r ./Wan2.1-I2V-14B-480P/google ./Wan2.1-ATI-14B-480P/
```
## Run
We provide a demo sript to run ATI.
```
bash run_example.sh -p examples/test.yaml -c ./Wan2.1-ATI-14B-480P -o samples
```
where `-p` is the path to the config file, `-c` is the path to the checkpoint, `-o` is the path to the output directory, `-g` defines the number of gpus to use (if unspecificed, all avalible GPUs will be used; if `1` is given, will run on single process mode).
Once finished, you will expect to fine:
- `samples/outputs` for the raw output videos.
- `samples/images_tracks` shows the input image togather with the user specified trajectories.
- `samples/outputs_vis` shows the output videos togather with the user specified trajectories.
Expected results:
Input Image & Trajectory
|
Generated Videos (Superimposed Trajectories)
|
|
|
|
|
|
|
|
|
|
|
|
|
## Motion Transfer

ATI can mimic a video by extracting its motion dynamics along with its first-frame image. Moreover, by leveraging powerful image-editing tools, it also enables "video-editing" capabilities.
First, extract motions from videos using the following script:
```
python3 tools/get_track_from_videos.py --source_folder examples/motion_transfer/ --save_folder samples_motion_transfer/
```
Then run ATI inference
```
bash run_example.sh -p samples_motion_transfer/test.yaml -c ./Wan2.1-ATI-14B-480P -o outputs_motion_transfer
```
Expected result
Reference Video (for Extracting Motion)
|
First Frame Image
|
Generated Video
|
|
|
|
## Create You Own Trajectory
We provide an interactive tool that allow users to draw and edit trajectories on their images.
Important note: **app.py** should only be run on **localhost**, as running it on a remote server may pose security risks.
1. First run:
```
cd tools/trajectory_editor
python3 app.py
```
then open this url [localhost:5000](http://localhost:5000/) in the browser.
2. Get the interface shown below, then click **Choose File** to open a local image.

3. Available trajectory functions:

a. **Free Trajectory**: Click and then drag with the mouse directly on the image.
b. **Circular (Camera Control)**:
- Place a circle on the image, then drag to set its size for frame 0.
- Place a few (3–4 recommended) track points on the circle.
- Drag the radius control to achieve zoom-in/zoom-out effects.
c. **Static Point**: A point that remains stationary over time.
*Note:* Pay attention to the progress bar in the box to control motion speed.

4. **Trajectory Editing**: Select a trajectory here, then delete, edit, or copy it. In edit mode, drag the trajectory directly on the image. The selected trajectory is highlighted by color.

5. **Camera Pan Control**: Enter horizontal (X) or vertical (Y) speed (pixels per frame). Positive X moves right; negative X moves left. Positive Y moves down; negative Y moves up. Click **Add to Selected** to apply to the current trajectory, or **Add to All** to apply to all trajectories. The selected points will gain a constant pan motion on top of their existing movement.

6. **Important:** After editing, click **Store Tracks** to save. Each image (not each trajectory) must be saved separately after drawing all trajectories.

7. Once all edits are complete, locate the `videos_example` folder in the **Trajectory Editor**.
## Citation
Please cite our paper if you find our work useful:
```
@article{wang2025ati,
title={{ATI}: Any Trajectory Instruction for Controllable Video Generation},
author={Wang, Angtian and Huang, Haibin and Fang, Zhiyuan and Yang, Yiding, and Ma, Chongyang}
journal={arXiv preprint},
volume={arXiv:2505.22944},
year={2025}
}
```