# F-16 **Repository Path**: ByteDance/F-16 ## Basic Information - **Project Name**: F-16 - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-06-28 - **Last Updated**: 2025-09-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Improving LLM Video Understanding with 16 Frames Per Second 🚀🚀 Welcome to the repo of **F-16**! F-16 is a powerful video large language model (LLM) that **perceives high-frame-rate videos**, which is developed by the Department of Electronic Engineering at Tsinghua University and ByteDance.
## 🔥 News - **2025-07-03**: We release the final checkpoint of F-16. - **2025-06-18**: We release the code of F-16. ## ⚡️ Future Plans - ~~Release the code.~~ - ~~Release final F-16.~~ ## 🌈 How to Use ### How to train a model 1. Prepare the dataset following `scripts/example_sft.json`. 2. Download LLaVA-OneVision Model from [huggingface](https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov). 3. Modify the parameters in `scripts/train_sft.sh`. 4. Run `bash scripts/train_sft.sh`. ### How to evaluate a checkpoint 1. Prepare the dataset following `scripts/example_sft.json`. 2. Modify the parameters in `scripts/eval.sh`. 3. Run `bash scripts/eval.sh`. ## 👀 Team **Team Tsinghua**: Yixuan Li, Changli Tang, Jimin Zhuang, Yudong Yang, Guangzhi Sun, Chao Zhang **Team ByteDance**: Wei Li, Zejun Ma ## ✨ Citation If you find F-16 useful, please cite the paper: ``` @inproceedings{li2025improving, title={Improving LLM Video Understanding with 16 Frames Per Second}, author={Li, Yixuan and Tang, Changli and Zhuang, Jimin and Yang, Yudong and Sun, Guangzhi and Li, Wei and Ma, Zejun and Zhang, Chao}, booktitle={Proc. ICML}, year={2025}, address={Vancouver} } ```