# HMR **Repository Path**: ByteDance/HMR ## Basic Information - **Project Name**: HMR - **Description**: Learning Harmonic Molecular Representations on Riemannian Manifold, ICLR, 2023 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-03-25 - **Last Updated**: 2026-01-28 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # HMR: Harmonic Molecular Representation on Riemannian Manifold This is the code repository for our ICLR 2023 paper [Learning Harmonic Molecular Representations on Riemannian Manifold](https://openreview.net/pdf?id=ySCL-NG_I3)

TOC

## Dependencies This work was developed and tested under pytorch 1.10.0 with CUDA 11.3. Please install dependencies as follows: ```bash # We recommend using conda for environment management conda create -n HMR python=3.7.3 conda activate HMR pip install -r requirements.txt # install PyMesh for surface mesh processing PYMESH_PATH="~/PyMesh" # substitute with your own PyMesh path git clone https://github.com/PyMesh/PyMesh.git $PYMESH_PATH cd $PYMESH_PATH git submodule update --init apt-get update # make sure you have these libraries installed before building PyMesh apt-get install cmake libgmp-dev libmpfr-dev libgmpxx4ldbl libboost-dev libboost-thread-dev libopenmpi-dev cd $PYMESH_PATH/third_party python build.py all # build third party dependencies cd $PYMESH_PATH mkdir build cd build cmake .. make -j # check for missing third-party dependencies if failed to make cd $PYMESH_PATH python setup.py install python -c "import pymesh; pymesh.test()" # install meshplot conda install -c conda-forge meshplot # install libigl conda install -c conda-forge igl # download MSMS MSMS_PATH="~/MSMS" # substitute with your own MSMS path wget https://ccsb.scripps.edu/msms/download/933/ -O msms_i86_64Linux2_2.6.1.tar.gz mkdir -p $MSMS_PATH # mark this directory as your $MSMS_bin for later use tar zxvf msms_i86_64Linux2_2.6.1.tar.gz -C $MSMS_PATH # install PyTorch 1.10.0 (e.g., with CUDA 11.3) conda install pytorch==1.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge pip install torch-scatter -f https://data.pyg.org/whl/torch-1.10.0+cu113.html # install HMR pip install -e . ``` ## Reproduce paper results Please refer to each folder under `tasks` for details on reproducing results from the paper. Data and models can be downloaded from Zonodo (https://zenodo.org/record/7686423#.ZAq_9ezMJf1). ## Citation ``` @inproceedings{ wang2023learning, title={Learning Harmonic Molecular Representations on Riemannian Manifold}, author={Yiqun Wang and Yuning Shen and Shi Chen and Lihao Wang and Fei YE and Hao Zhou}, booktitle={The Eleventh International Conference on Learning Representations }, year={2023}, url={https://openreview.net/forum?id=ySCL-NG_I3} } ``` ## License Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.