# HMR
**Repository Path**: ByteDance/HMR
## Basic Information
- **Project Name**: HMR
- **Description**: Learning Harmonic Molecular Representations on Riemannian Manifold, ICLR, 2023
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2023-03-25
- **Last Updated**: 2026-01-28
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# HMR: Harmonic Molecular Representation on Riemannian Manifold
This is the code repository for our ICLR 2023 paper
[Learning Harmonic Molecular Representations on Riemannian Manifold](https://openreview.net/pdf?id=ySCL-NG_I3)
## Dependencies
This work was developed and tested under pytorch 1.10.0 with CUDA 11.3. Please install dependencies as follows:
```bash
# We recommend using conda for environment management
conda create -n HMR python=3.7.3
conda activate HMR
pip install -r requirements.txt
# install PyMesh for surface mesh processing
PYMESH_PATH="~/PyMesh" # substitute with your own PyMesh path
git clone https://github.com/PyMesh/PyMesh.git $PYMESH_PATH
cd $PYMESH_PATH
git submodule update --init
apt-get update
# make sure you have these libraries installed before building PyMesh
apt-get install cmake libgmp-dev libmpfr-dev libgmpxx4ldbl libboost-dev libboost-thread-dev libopenmpi-dev
cd $PYMESH_PATH/third_party
python build.py all # build third party dependencies
cd $PYMESH_PATH
mkdir build
cd build
cmake ..
make -j # check for missing third-party dependencies if failed to make
cd $PYMESH_PATH
python setup.py install
python -c "import pymesh; pymesh.test()"
# install meshplot
conda install -c conda-forge meshplot
# install libigl
conda install -c conda-forge igl
# download MSMS
MSMS_PATH="~/MSMS" # substitute with your own MSMS path
wget https://ccsb.scripps.edu/msms/download/933/ -O msms_i86_64Linux2_2.6.1.tar.gz
mkdir -p $MSMS_PATH # mark this directory as your $MSMS_bin for later use
tar zxvf msms_i86_64Linux2_2.6.1.tar.gz -C $MSMS_PATH
# install PyTorch 1.10.0 (e.g., with CUDA 11.3)
conda install pytorch==1.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
pip install torch-scatter -f https://data.pyg.org/whl/torch-1.10.0+cu113.html
# install HMR
pip install -e .
```
## Reproduce paper results
Please refer to each folder under `tasks` for details on reproducing results from the paper.
Data and models can be downloaded from Zonodo (https://zenodo.org/record/7686423#.ZAq_9ezMJf1).
## Citation
```
@inproceedings{
wang2023learning,
title={Learning Harmonic Molecular Representations on Riemannian Manifold},
author={Yiqun Wang and Yuning Shen and Shi Chen and Lihao Wang and Fei YE and Hao Zhou},
booktitle={The Eleventh International Conference on Learning Representations },
year={2023},
url={https://openreview.net/forum?id=ySCL-NG_I3}
}
```
## License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.