# Hi3DGen
**Repository Path**: ByteDance/Hi3DGen
## Basic Information
- **Project Name**: Hi3DGen
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-04-18
- **Last Updated**: 2025-09-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging
ICCV 2025
1The Chinese University of Hong Kong, Shenzhen,
2ByteDance,
3AIR, Tsinghua University

[](https://stable-x.github.io/Hi3DGen/)
[](https://arxiv.org/abs/2503.22236)
[](https://huggingface.co/spaces/Stable-X/Hi3DGen)
[](https://huggingface.co/Stable-X/trellis-normal-v0-1)
Hi3DGen target at generating high-fidelity 3D geometry from images using normal maps as an intermediate representation. The framework addresses limitations in existing methods that struggle to reproduce fine-grained geometric details from 2D inputs.
## Installation
Clone the repo:
```bash
git clone --recursive https://github.com/ByteDance/Hi3DGen.git
cd Hi3DGen
```
Create a conda environment (optional):
```bash
conda create -n stablex python=3.10
conda activate stablex
```
Install dependencies:
```bash
# pytorch (select correct CUDA version)
pip install torch==2.4.0 torchvision==0.19.0 --index-url https://download.pytorch.org/whl/{your-cuda-version}
pip install spconv-cu{your-cuda-version}==2.3.6 xformers==0.0.27.post2
# other dependencies
pip install -r requirements.txt
```
## Local Demo 🤗
Run by:
```bash
python app.py
```
## Citation
If you find this work helpful, please consider citing our paper:
```
@article{ye2025hi3dgen,
title={Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging},
author={Ye, Chongjie and Wu, Yushuang and Lu, Ziteng and Chang, Jiahao and Guo, Xiaoyang and Zhou, Jiaqing and Zhao, Hao and Han, Xiaoguang},
journal={arXiv preprint arXiv:2503.22236},
year={2025}
}
```