# OMGD **Repository Path**: ByteDance/OMGD ## Basic Information - **Project Name**: OMGD - **Description**: Online Multi-Granularity Distillation for GAN Compression (ICCV2021) - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-08-26 - **Last Updated**: 2026-02-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the ICCV2021 paper "[Online Multi-Granularity Distillation for GAN Compression](https://arxiv.org/pdf/2108.06908.pdf)". This algorithm is proposed by ByteDance, Intelligent Creation, AutoML Team (字节跳动-智能创作-AutoML团队). Authors: Yuxi Ren*, Jie Wu*, Xuefeng Xiao, Jianchao Yang. ## Overview ![overview](imgs/OMGD.png) ## Performance ![performance](imgs/performance.png) ## Prerequisites * Linux * Python 3 * CPU or NVIDIA GPU + CUDA CuDNN ## Getting Started ### Installation - Clone this repo: ```shell git clone https://github.com/bytedance/OMGD.git cd OMGD ``` - Install dependencies. ```shell conda create -n OMGD python=3.7 conda activate OMGD pip install torch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 pip install -r requirements.txt ``` ### Data preparation - edges2shoes - Download the dataset ```shell bash datasets/download_pix2pix_dataset.sh edges2shoes-r ``` - Get the statistical information for the ground-truth images for your dataset to compute FID. ```shell bash datasets/download_real_stat.sh edges2shoes-r B ``` - cityscapes - Download the dataset Download the dataset (*gtFine_trainvaltest.zip* and *leftImg8bit_trainvaltest.zip*) from [here](https://cityscapes-dataset.com), and preprocess it. ```shell python datasets/get_trainIds.py database/cityscapes-origin/gtFine/ python datasets/prepare_cityscapes_dataset.py \ --gtFine_dir database/cityscapes-origin/gtFine \ --leftImg8bit_dir database/cityscapes-origin/leftImg8bit \ --output_dir database/cityscapes \ --train_table_path datasets/train_table.txt \ --val_table_path datasets/val_table.txt ``` - Get the statistical information for the ground-truth images for your dataset to compute FID. ```shell bash datasets/download_real_stat.sh cityscapes A ``` - horse2zebra - Download the dataset ```shell bash datasets/download_cyclegan_dataset.sh horse2zebra ``` - Get the statistical information for the ground-truth images for your dataset to compute FID. ```shell bash datasets/download_real_stat.sh horse2zebra A bash datasets/download_real_stat.sh horse2zebra B ``` - summer2winter - Download the dataset ```shell bash datasets/download_cyclegan_dataset.sh summer2winter_yosemite ``` - Get the statistical information for the ground-truth images for your dataset to compute FID from [here](https://drive.google.com/drive/folders/1JKJlpUDdD4TdXdwPwfdWUiF4PsXLAbto) ### Pretrained Model We provide a list of pre-trained models in [link](https://drive.google.com/drive/folders/1lDSguCuRDKl2bKQzAuc8hR-UE7eTqWvW?usp=sharing). DRN model can used to compute mIoU [link](https://drive.google.com/drive/folders/0B_4LoEXGO1TwcmhzLXpWUVFEMXM?resourcekey=0-PMTQHtlWMtSBYozjajFLXA). ### Training - pretrained vgg16 we should prepare weights of a vgg16 to calculate the style loss - train student model using OMGD Run the following script to train a unet-style student on cityscapes dataset, all scripts for cyclegan and pix2pix on horse2zebra,summer2winter,edges2shoes and cityscapes can be found in ./scripts ```shell bash scripts/unet_pix2pix/cityscapes/distill.sh ``` ### Testing - test student models, FID or mIoU will be calculated, take unet-style generator on cityscapes dataset as an example ```shell bash scripts/unet_pix2pix/cityscapes/test.sh ``` ## Citation If you use this code for your research, please cite our paper. ```shell @article{ren2021online, title={Online Multi-Granularity Distillation for GAN Compression}, author={Ren, Yuxi and Wu, Jie and Xiao, Xuefeng and Yang, Jianchao}, journal={arXiv preprint arXiv:2108.06908}, year={2021} } ``` ## Acknowledgements Our code is developed based on [GAN Compression](https://github.com/mit-han-lab/gan-compression)