# Valley **Repository Path**: ByteDance/Valley ## Basic Information - **Project Name**: Valley - **Description**: Valley is a cutting-edge multimodal large model designed to handle a variety of tasks involving text, images, and video data. - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-12-25 - **Last Updated**: 2025-11-29 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
# Valley Family: Exploring Scalable Vision-Language Design for Multimodal Understanding and Reasoning

   📑 Home Page   |    🤗 Valley2 Model   |    🤗 Valley2-DPO Model   |    🤗 Valley2.5 Model   |    📙 Valley2 Paper   |    📙 Valley2.5 Paper   

## News - [2025/11/27] 🔥🔥🔥 We have released the technical report of Valley2.5! Check out the full paper here: [Valley2.5 Technical Report](https://raw.githubusercontent.com/bytedance/Valley/refs/heads/main/docs/Valley2_5_Tech_Report.pdf). - [2025/10/26] 🔥🔥🔥 We have released the weights of [Valley2.5](https://huggingface.co/bytedance-research/Valley2.5), which significantly enhances multimodal understanding and reasoning capabilities. It has achieved 74.3 on the OpenCompass Multi-modal Academic Leaderboard! - [2025/06/06] 🔥🔥 We have submitted Valley2-DPO to the closed-source OpenCompass Multi-modal Leaderboard, achieving a score of 38.62, which ranks top-3 among multi-modal models with fewer than 10 billion (10B) parameters. - [2025/04/14] 🔥 We have released the weights of [Valley2-DPO](https://huggingface.co/bytedance-research/Valley2-DPO)! - [2025/02/09] 🔥 We have developed the Valley2-DPO, which scored 69.6 on the Opencompass leaderboard, and the weights will be released soon. - [2025/01/10] 🔥 Our paper has been released! [Valley2: Exploring Multimodal Models with Scalable Vision-Language Design](https://arxiv.org/abs/2501.05901) - [2024/12/23] 🔥 Announcing [Valley2(Valley-Eagle-7B)](https://huggingface.co/bytedance-research/Valley-Eagle-7B)! ## Introduction Valley is a cutting-edge multimodal large model designed to handle a variety of tasks involving text, images, and video data, which is developed by ByteDance. Our model - Achieved the best results in the inhouse e-commerce and short-video benchmarks, much better then other SOTA opensource models. - Demonstrated comparatively outstanding performance in the OpenCompass Benchmark. ## Valley2.5 ### Architecture For the LLM, we select Qwen3-8B-Base, chosen for its strong reasoning and language comprehension abilities. The Vision Encoder leverages Qwen2-VL-ViT, capable of processing dynamic-resolution inputs—a more robust alternative to the commonly used tiling approach when dealing with images of extreme aspect ratios. The Projector employs a 2×2 pixelshuffle downsampling on visual tokens, followed by a two-layer MLP with a 64k hidden dimension, providing high alignment capacity between modalities. This architectural design ensures that Valley2.5 achieves a balanced trade-off between representational power, computational efficiency, and multimodal adaptability. The overall architecture is shown as follows:
opencompass
### Performance

### Environment Setup ``` bash pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu121 pip install -r requirements.txt ``` ### Inference Demo - Single Image ```python import torch import urllib from io import BytesIO from PIL import Image from transformers import AutoProcessor, AutoModel GTHINKER_SYS_PROMPT = ( "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. " "The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. " "The reasoning process and answer are enclosed within and tags, respectively, i.e., " " reasoning process here answer here . In the reasoning process enclosed within ," " each specific visual cue is enclosed within ..., where * indicates the index of the specific cue. " "Before concluding the final answer, pause for a quick consistency check: verify whether the visual cues support the reasoning " "and whether each step logically follows from what is seen. If correct, conclude the answer; otherwise, revise the visual cues and reasoning, then conclude." ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModel.from_pretrained( "bytedance-research/Valley2.5", trust_remote_code=True ) processor = AutoProcessor.from_pretrained( "bytedance-research/Valley2.5", only_navit=True, max_pixels=28*28*16384, min_pixels=28*28*4, trust_remote_code=True ) url = "https://images.unsplash.com/photo-1734640113825-24dd7c056052" img = urllib.request.urlopen(url=url, timeout=5).read() img = Image.open(BytesIO(img)).convert("RGB") res = processor( { "conversations": [ {"role": "system", "content": GTHINKER_SYS_PROMPT}, {"role": "user", "content": "Describe the given image."}, ], "images": [img] }, enable_thinking=True ) with torch.inference_mode(): model.to(dtype=torch.bfloat16, device=device) output_ids = model.generate( input_ids=res["input_ids"].to(device), image_sizes=res["image_sizes"], pixel_values=res["pixel_values"].to(dtype=torch.bfloat16, device=device), image_grid_thw=res["image_grid_thw"].to(device), do_sample=False, max_new_tokens=4096, repetition_penalty=1.0, return_dict_in_generate=True, output_scores=True ) input_token_len = res["input_ids"].shape[1] generation_text = processor.batch_decode(output_ids.sequences[:, input_token_len:])[0] generation_text = generation_text.replace("<|im_end|>", "") print(generation_text) ``` - Multi Images ```python import torch import urllib from io import BytesIO from PIL import Image from transformers import AutoProcessor, AutoModel GTHINKER_SYS_PROMPT = ( "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. " "The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. " "The reasoning process and answer are enclosed within and tags, respectively, i.e., " " reasoning process here answer here . In the reasoning process enclosed within ," " each specific visual cue is enclosed within ..., where * indicates the index of the specific cue. " "Before concluding the final answer, pause for a quick consistency check: verify whether the visual cues support the reasoning " "and whether each step logically follows from what is seen. If correct, conclude the answer; otherwise, revise the visual cues and reasoning, then conclude." ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModel.from_pretrained( "bytedance-research/Valley2.5", trust_remote_code=True ) processor = AutoProcessor.from_pretrained( "bytedance-research/Valley2.5", only_navit=True, max_pixels=28*28*256, min_pixels=28*28*4, trust_remote_code=True ) urls = [ "https://plus.unsplash.com/premium_photo-1661632559307-902ac3f6174c", "https://plus.unsplash.com/premium_photo-1661632559713-a478160cd72e", "https://plus.unsplash.com/premium_photo-1661607772173-54f7b8263c27", "https://plus.unsplash.com/premium_photo-1661607115685-36b2a7276389", "https://plus.unsplash.com/premium_photo-1661607103369-e799ee7ef954", "https://plus.unsplash.com/premium_photo-1661628841460-1c9d7e6669ec", "https://plus.unsplash.com/premium_photo-1661602273588-f213a4155caf", "https://plus.unsplash.com/premium_photo-1661602247160-d42d7aba6798" ] url2img = lambda url: Image.open( BytesIO(urllib.request.urlopen(url=url, timeout=5).read()) ).convert("RGB") imgs = [url2img(url) for url in urls] res = processor( { "conversations": [ {"role": "system", "content": GTHINKER_SYS_PROMPT}, {"role": "user", "content": "Describe the given images."}, ], "images": imgs }, enable_thinking=True ) with torch.inference_mode(): model.to(dtype=torch.bfloat16, device=device) output_ids = model.generate( input_ids=res["input_ids"].to(device), image_sizes=res["image_sizes"], pixel_values=res["pixel_values"].to(dtype=torch.bfloat16, device=device), image_grid_thw=res["image_grid_thw"].to(device), do_sample=False, max_new_tokens=4096, repetition_penalty=1.0, return_dict_in_generate=True, output_scores=True ) input_token_len = res["input_ids"].shape[1] generation_text = processor.batch_decode(output_ids.sequences[:, input_token_len:])[0] generation_text = generation_text.replace("<|im_end|>", "") print(generation_text) ``` - Video ```python import torch import urllib import decord import requests import numpy as np from io import BytesIO from PIL import Image from torchvision import transforms from transformers import AutoProcessor, AutoModel GTHINKER_SYS_PROMPT = ( "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. " "The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. " "The reasoning process and answer are enclosed within and tags, respectively, i.e., " " reasoning process here answer here . In the reasoning process enclosed within ," " each specific visual cue is enclosed within ..., where * indicates the index of the specific cue. " "Before concluding the final answer, pause for a quick consistency check: verify whether the visual cues support the reasoning " "and whether each step logically follows from what is seen. If correct, conclude the answer; otherwise, revise the visual cues and reasoning, then conclude." ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModel.from_pretrained( "bytedance-research/Valley2.5", trust_remote_code=True ) processor = AutoProcessor.from_pretrained( "bytedance-research/Valley2.5", only_navit=True, max_pixels=28*28*256, min_pixels=28*28*4, trust_remote_code=True ) url = 'https://videos.pexels.com/video-files/29641276/12753127_1920_1080_25fps.mp4' video_file = './video.mp4' response = requests.get(url) if response.status_code == 200: with open("video.mp4", "wb") as f: f.write(response.content) else: print("download error!") exit(0) video_reader = decord.VideoReader(video_file) decord.bridge.set_bridge("torch") num_frame = 8 video = video_reader.get_batch( np.linspace(0, len(video_reader) - 1, num_frame).astype(np.int_) ).byte() imgs = [transforms.ToPILImage()(image.permute(2, 0, 1)).convert("RGB") for image in video] res = processor( { "conversations": [ {"role": "system", "content": GTHINKER_SYS_PROMPT}, {"role": "user", "content": "Describe the given video."}, ], "images": imgs }, enable_thinking=True ) with torch.inference_mode(): model.to(dtype=torch.bfloat16, device=device) output_ids = model.generate( input_ids=res["input_ids"].to(device), image_sizes=res["image_sizes"], pixel_values=res["pixel_values"].to(dtype=torch.bfloat16, device=device), image_grid_thw=res["image_grid_thw"].to(device), do_sample=False, max_new_tokens=4096, repetition_penalty=1.0, return_dict_in_generate=True, output_scores=True ) input_token_len = res["input_ids"].shape[1] generation_text = processor.batch_decode(output_ids.sequences[:, input_token_len:])[0] generation_text = generation_text.replace("<|im_end|>", "") print(generation_text) ``` ## Valley2 ### Architecture The foundational version of Valley is a multimodal large model aligned with Siglip and Qwen2.5, incorporating LargeMLP and ConvAdapter to construct the projector. - In the final version, we also referenced [Eagle](https://arxiv.org/pdf/2408.15998), introducing an additional VisionEncoder that can flexibly adjust the number of tokens and is parallelized with the original visual tokens. - This enhancement supplements the model’s performance in extreme scenarios, and we chose the Qwen2vl VisionEncoder for this purpose. and the model structure is shown as follows:

opencompass
### Performance
opencompass

### Environment Setup ``` bash pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu121 pip install -r requirements.txt ``` ### Inference Demo - Single Image ``` python # Method-1 import torch import urllib from io import BytesIO from PIL import Image from transformers import AutoProcessor, AutoModel device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModel.from_pretrained("bytedance-research/Valley2-DPO", trust_remote_code=True) processor = AutoProcessor.from_pretrained("bytedance-research/Valley2-DPO", trust_remote_code=True) url = "https://images.unsplash.com/photo-1734640113825-24dd7c056052" img = urllib.request.urlopen(url=url, timeout=5).read() img = Image.open(BytesIO(img)).convert("RGB") res = processor( { "conversations": [ {"role": "system", "content": "You are Valley, developed by ByteDance. Your are a helpfull Assistant."}, {"role": "user", "content": "Describe the given image."}, ], "images": [img] }, inference=True ) with torch.inference_mode(): model.to(dtype=torch.float16, device=device) output_ids = model.generate( input_ids=res["input_ids"].to(device), images=[[item.to(dtype=torch.float16, device=device) for item in img] for img in res["images"]], image_sizes=res["image_sizes"], pixel_values=res["pixel_values"].to(dtype=torch.float16, device=device), image_grid_thw=res["image_grid_thw"].to(device), do_sample=False, max_new_tokens=1024, repetition_penalty=1.0, return_dict_in_generate=True, output_scores=True, ) input_token_len = res["input_ids"].shape[1] generation_text = processor.batch_decode(output_ids.sequences[:, input_token_len:])[0] generation_text = generation_text.replace("<|im_end|>", "") print(generation_text) ``` ``` python # Method-2 from valley2.valley2_chat import Valley2Chat import urllib from io import BytesIO from PIL import Image model = Valley2Chat( model_path="bytedance-research/Valley2-DPO", padding_side="left", ) url = "https://images.unsplash.com/photo-1734640113825-24dd7c056052" img = urllib.request.urlopen(url=url, timeout=5).read() img = Image.open(BytesIO(img)).convert("RGB") request = { "chat_history": [ {"role": "system", "content": "You are Valley, developed by ByteDance. Your are a helpfull Assistant."}, {"role": "user", "content": "Describe the given image."}, ], "images": [img], } result = model(request) print(f"\n>>> Assistant:\n") print(result) ``` - Multi Images ``` python # Method-1 import torch import urllib from io import BytesIO from PIL import Image from transformers import AutoProcessor, AutoModel device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModel.from_pretrained("bytedance-research/Valley2-DPO", trust_remote_code=True) processor = AutoProcessor.from_pretrained("bytedance-research/Valley2-DPO", trust_remote_code=True) urls = [ "https://plus.unsplash.com/premium_photo-1661632559307-902ac3f6174c", "https://plus.unsplash.com/premium_photo-1661632559713-a478160cd72e", "https://plus.unsplash.com/premium_photo-1661607772173-54f7b8263c27", "https://plus.unsplash.com/premium_photo-1661607115685-36b2a7276389", "https://plus.unsplash.com/premium_photo-1661607103369-e799ee7ef954", "https://plus.unsplash.com/premium_photo-1661628841460-1c9d7e6669ec", "https://plus.unsplash.com/premium_photo-1661602273588-f213a4155caf", "https://plus.unsplash.com/premium_photo-1661602247160-d42d7aba6798" ] url2img = lambda url: Image.open( BytesIO(urllib.request.urlopen(url=url, timeout=5).read()) ).convert("RGB") imgs = [url2img(url) for url in urls] res = processor( { "conversations": [ {"role": "system", "content": "You are Valley, developed by ByteDance. Your are a helpfull Assistant."}, {"role": "user", "content": "Describe the given images."}, ], "images": imgs }, inference=True ) with torch.inference_mode(): model.to(dtype=torch.float16, device=device) output_ids = model.generate( input_ids=res["input_ids"].to(device), images=[[item.to(dtype=torch.float16, device=device) for item in img] for img in res["images"]], image_sizes=res["image_sizes"], pixel_values=res["pixel_values"].to(dtype=torch.float16, device=device), image_grid_thw=res["image_grid_thw"].to(device), do_sample=False, max_new_tokens=1024, repetition_penalty=1.0, return_dict_in_generate=True, output_scores=True, ) input_token_len = res["input_ids"].shape[1] generation_text = processor.batch_decode(output_ids.sequences[:, input_token_len:])[0] generation_text = generation_text.replace("<|im_end|>", "") print(generation_text) ``` ``` python # Method-2 from valley2.valley2_chat import Valley2Chat import urllib from io import BytesIO from PIL import Image model = Valley2Chat( model_path="bytedance-research/Valley2-DPO", padding_side="left", ) urls = [ "https://plus.unsplash.com/premium_photo-1661632559307-902ac3f6174c", "https://plus.unsplash.com/premium_photo-1661632559713-a478160cd72e", "https://plus.unsplash.com/premium_photo-1661607772173-54f7b8263c27", "https://plus.unsplash.com/premium_photo-1661607115685-36b2a7276389", "https://plus.unsplash.com/premium_photo-1661607103369-e799ee7ef954", "https://plus.unsplash.com/premium_photo-1661628841460-1c9d7e6669ec", "https://plus.unsplash.com/premium_photo-1661602273588-f213a4155caf", "https://plus.unsplash.com/premium_photo-1661602247160-d42d7aba6798" ] url2img = lambda url: Image.open( BytesIO(urllib.request.urlopen(url=url, timeout=5).read()) ).convert("RGB") imgs = [url2img(url) for url in urls] request = { "chat_history": [ {"role": "system", "content": "You are Valley, developed by ByteDance. Your are a helpfull Assistant."}, {"role": "user", "content": "Describe the given images."}, ], "images": imgs, } result = model(request) print(f"\n>>> Assistant:\n") print(result) ``` - Video ``` python # Method-1 import torch import urllib import decord import requests import numpy as np from io import BytesIO from PIL import Image from torchvision import transforms from transformers import AutoProcessor, AutoModel device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModel.from_pretrained("bytedance-research/Valley2-DPO", trust_remote_code=True) processor = AutoProcessor.from_pretrained("bytedance-research/Valley2-DPO", trust_remote_code=True) url = 'https://videos.pexels.com/video-files/29641276/12753127_1920_1080_25fps.mp4' video_file = './video.mp4' response = requests.get(url) if response.status_code == 200: with open("video.mp4", "wb") as f: f.write(response.content) else: print("download error!") exit(0) video_reader = decord.VideoReader(video_file) decord.bridge.set_bridge("torch") video = video_reader.get_batch( np.linspace(0, len(video_reader) - 1, 8).astype(np.int_) ).byte() res = processor( { "conversations": [ {"role": "system", "content": "You are Valley, developed by ByteDance. Your are a helpfull Assistant."}, {"role": "user", "content": "Describe the given video."}, ], "images": [transforms.ToPILImage()(image.permute(2, 0, 1)).convert("RGB") for image in video], }, inference=True ) with torch.inference_mode(): model.to(dtype=torch.float16, device=device) output_ids = model.generate( input_ids=res["input_ids"].to(device), images=[[item.to(dtype=torch.float16, device=device) for item in img] for img in res["images"]], image_sizes=res["image_sizes"], pixel_values=res["pixel_values"].to(dtype=torch.float16, device=device), image_grid_thw=res["image_grid_thw"].to(device), do_sample=False, max_new_tokens=1024, repetition_penalty=1.0, return_dict_in_generate=True, output_scores=True, ) input_token_len = res["input_ids"].shape[1] generation_text = processor.batch_decode(output_ids.sequences[:, input_token_len:])[0] generation_text = generation_text.replace("<|im_end|>", "") print(generation_text) ``` ``` python # Method-2 from valley2.valley2_chat import Valley2Chat import urllib import decord import requests import numpy as np from io import BytesIO from PIL import Image from torchvision import transforms model = Valley2Chat( model_path="bytedance-research/Valley2-DPO", padding_side="left", ) url = 'https://videos.pexels.com/video-files/29641276/12753127_1920_1080_25fps.mp4' video_file = './video.mp4' response = requests.get(url) if response.status_code == 200: with open("video.mp4", "wb") as f: f.write(response.content) else: print("download error!") exit(0) video_reader = decord.VideoReader(video_file) decord.bridge.set_bridge("torch") video = video_reader.get_batch( np.linspace(0, len(video_reader) - 1, 8).astype(np.int_) ).byte() request = { "chat_history": [ {'role': 'system', 'content': 'You are Valley, developed by ByteDance. Your are a helpfull Assistant.'}, {'role': 'user', 'content': 'Describe the given video.'}, ], "images": [transforms.ToPILImage()(image.permute(2, 0, 1)).convert("RGB") for image in video], } result = model(request) print(f"\n>>> Assistant:\n") print(result) ``` ## Related Project We list related Project - [Valley: Video Assistant with Large Language model Enhanced abilitY](https://github.com/RupertLuo/Valley) - [LLaVA: Large Language and Vision Assistant](https://github.com/haotian-liu/LLaVA) - [Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders](https://github.com/NVlabs/EAGLE) - [LLaVA-CoT: Let Vision Language Models Reason Step-by-Step](https://github.com/PKU-YuanGroup/LLaVA-CoT) - [Qwen2.5](https://github.com/QwenLM/Qwen2.5) - [Qwen3](https://github.com/QwenLM/Qwen3) ## License Agreement All of our open-source models are licensed under the [Apache-2.0](./LICENSE) license. ## We are Hiring 🔥🔥🔥 The Tiktop-Ecommerce Team focuses on the research and development of multi-modal large model algorithms and foundational algorithms, we welcome inquiries and look forward to working on challenging projects with talented individuals like you! Location: Beijing / Shanghai / Hangzhou / Singapore Contact & Resume Submission: xiaochen.qiu@bytedance.com > Tiktok-电商团队专注于多模态大模型算法和基础算法的研发,欢迎咨询(实习/全职),期待和优秀的你,一起做有挑战的事情! > > 岗位城市:北京/上海/杭州/新加坡 > > 咨询&简历投递:xiaochen.qiu@bytedance.com ## Citation ``` @article{wu2025valley2, title={Valley2: Exploring Multimodal Models with Scalable Vision-Language Design}, author={Wu, Ziheng and Chen, Zhenghao and Luo, Ruipu and Zhang, Can and Gao, Yuan and He, Zhentao and Wang, Xian and Lin, Haoran and Qiu, Minghui}, journal={arXiv preprint arXiv:2501.05901}, year={2025} } @article{luo2023valley, title={Valley: Video assistant with large language model enhanced ability}, author={Luo, Ruipu and Zhao, Ziwang and Yang, Min and Dong, Junwei and Li, Da and Lu, Pengcheng and Wang, Tao and Hu, Linmei and Qiu, Minghui and Wei, Zhongyu}, journal={arXiv preprint arXiv:2306.07207}, year={2023} } ```