# trae-agent **Repository Path**: ByteDance/trae-agent ## Basic Information - **Project Name**: trae-agent - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2025-06-15 - **Last Updated**: 2025-09-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Trae Agent [![arXiv:2507.23370](https://img.shields.io/badge/TechReport-arXiv%3A2507.23370-b31a1b)](https://arxiv.org/abs/2507.23370) [![Python 3.12+](https://img.shields.io/badge/python-3.12+-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Pre-commit](https://github.com/bytedance/trae-agent/actions/workflows/pre-commit.yml/badge.svg)](https://github.com/bytedance/trae-agent/actions/workflows/pre-commit.yml) [![Unit Tests](https://github.com/bytedance/trae-agent/actions/workflows/unit-test.yml/badge.svg)](https://github.com/bytedance/trae-agent/actions/workflows/unit-test.yml) [![Discord](https://img.shields.io/discord/1320998163615846420?label=Join%20Discord&color=7289DA)](https://discord.gg/VwaQ4ZBHvC) **Trae Agent** is an LLM-based agent for general purpose software engineering tasks. It provides a powerful CLI interface that can understand natural language instructions and execute complex software engineering workflows using various tools and LLM providers. For technical details please refer to [our technical report](https://arxiv.org/abs/2507.23370). **Project Status:** The project is still being actively developed. Please refer to [docs/roadmap.md](docs/roadmap.md) and [CONTRIBUTING](CONTRIBUTING.md) if you are willing to help us improve Trae Agent. **Difference with Other CLI Agents:** Trae Agent offers a transparent, modular architecture that researchers and developers can easily modify, extend, and analyze, making it an ideal platform for **studying AI agent architectures, conducting ablation studies, and developing novel agent capabilities**. This **_research-friendly design_** enables the academic and open-source communities to contribute to and build upon the foundational agent framework, fostering innovation in the rapidly evolving field of AI agents. ## ✨ Features - 🌊 **Lakeview**: Provides short and concise summarisation for agent steps - 🤖 **Multi-LLM Support**: Works with OpenAI, Anthropic, Doubao, Azure, OpenRouter, Ollama and Google Gemini APIs - 🛠️ **Rich Tool Ecosystem**: File editing, bash execution, sequential thinking, and more - 🎯 **Interactive Mode**: Conversational interface for iterative development - 📊 **Trajectory Recording**: Detailed logging of all agent actions for debugging and analysis - ⚙️ **Flexible Configuration**: YAML-based configuration with environment variable support - 🚀 **Easy Installation**: Simple pip-based installation ## 🚀 Installation ### Requirements - UV (https://docs.astral.sh/uv/) - API key for your chosen provider (OpenAI, Anthropic, Google Gemini, OpenRouter, etc.) ### Setup ```bash git clone https://github.com/bytedance/trae-agent.git cd trae-agent uv sync --all-extras source .venv/bin/activate ``` ## ⚙️ Configuration ### YAML Configuration (Recommended) 1. Copy the example configuration file: ```bash cp trae_config.yaml.example trae_config.yaml ``` 2. Edit `trae_config.yaml` with your API credentials and preferences: ```yaml agents: trae_agent: enable_lakeview: true model: trae_agent_model # the model configuration name for Trae Agent max_steps: 200 # max number of agent steps tools: # tools used with Trae Agent - bash - str_replace_based_edit_tool - sequentialthinking - task_done model_providers: # model providers configuration anthropic: api_key: your_anthropic_api_key provider: anthropic openai: api_key: your_openai_api_key provider: openai models: trae_agent_model: model_provider: anthropic model: claude-sonnet-4-20250514 max_tokens: 4096 temperature: 0.5 ``` **Note:** The `trae_config.yaml` file is ignored by git to protect your API keys. ### Using Base URL In some cases, we need to use a custom URL for the api. Just add the `base_url` field after `provider`, take the following config as an example: ``` openai: api_key: your_openrouter_api_key provider: openai base_url: https://openrouter.ai/api/v1 ``` **Note:** For field formatting, use spaces only. Tabs (\t) are not allowed. ### Environment Variables (Alternative) You can also configure API keys using environment variables and store them in the .env file: ```bash export OPENAI_API_KEY="your-openai-api-key" export OPENAI_BASE_URL="your-openai-base-url" export ANTHROPIC_API_KEY="your-anthropic-api-key" export ANTHROPIC_BASE_URL="your-anthropic-base-url" export GOOGLE_API_KEY="your-google-api-key" export GOOGLE_BASE_URL="your-google-base-url" export OPENROUTER_API_KEY="your-openrouter-api-key" export OPENROUTER_BASE_URL="https://openrouter.ai/api/v1" export DOUBAO_API_KEY="your-doubao-api-key" export DOUBAO_BASE_URL="https://ark.cn-beijing.volces.com/api/v3/" ``` ### MCP Services (Optional) To enable Model Context Protocol (MCP) services, add an `mcp_servers` section to your configuration: ```yaml mcp_servers: playwright: command: npx args: - "@playwright/mcp@0.0.27" ``` **Configuration Priority:** Command-line arguments > Configuration file > Environment variables > Default values **Legacy JSON Configuration:** If using the older JSON format, see [docs/legacy_config.md](docs/legacy_config.md). We recommend migrating to YAML. ## 📖 Usage ### Basic Commands ```bash # Simple task execution trae-cli run "Create a hello world Python script" # Check configuration trae-cli show-config # Interactive mode trae-cli interactive ``` ### Provider-Specific Examples ```bash # OpenAI trae-cli run "Fix the bug in main.py" --provider openai --model gpt-4o # Anthropic trae-cli run "Add unit tests" --provider anthropic --model claude-sonnet-4-20250514 # Google Gemini trae-cli run "Optimize this algorithm" --provider google --model gemini-2.5-flash # OpenRouter (access to multiple providers) trae-cli run "Review this code" --provider openrouter --model "anthropic/claude-3-5-sonnet" trae-cli run "Generate documentation" --provider openrouter --model "openai/gpt-4o" # Doubao trae-cli run "Refactor the database module" --provider doubao --model doubao-seed-1.6 # Ollama (local models) trae-cli run "Comment this code" --provider ollama --model qwen3 ``` ### Advanced Options ```bash # Custom working directory trae-cli run "Add tests for utils module" --working-dir /path/to/project # Save execution trajectory trae-cli run "Debug authentication" --trajectory-file debug_session.json # Force patch generation trae-cli run "Update API endpoints" --must-patch # Interactive mode with custom settings trae-cli interactive --provider openai --model gpt-4o --max-steps 30 ``` ## Docker Mode Commands ### Preparation **Important**: You need to make sure Docker is configured in your environment. ### Usage ```bash # Specify a Docker image to run the task in a new container trae-cli run "Add tests for utils module" --docker-image python:3.11 # Specify a Docker image to run the task in a new container and mount the directory trae-cli run "write a script to print helloworld" --docker-image python:3.12 --working-dir test_workdir/ # Attach to an existing Docker container by ID (`--working-dir` is invalid with `--docker-container-id`) trae-cli run "Update API endpoints" --docker-container-id 91998a56056c # Specify an absolute path to a Dockerfile to build an environment trae-cli run "Debug authentication" --dockerfile-path test_workspace/Dockerfile # Specify a path to a local Docker image file (tar archive) to load trae-cli run "Fix the bug in main.py" --docker-image-file test_workspace/trae_agent_custom.tar # Remove the Docker container after finishing the task (keep default) trae-cli run "Add tests for utils module" --docker-image python:3.11 --docker-keep false ``` ### Interactive Mode Commands In interactive mode, you can use: - Type any task description to execute it - `status` - Show agent information - `help` - Show available commands - `clear` - Clear the screen - `exit` or `quit` - End the session ## 🛠️ Advanced Features ### Available Tools Trae Agent provides a comprehensive toolkit for software engineering tasks including file editing, bash execution, structured thinking, and task completion. For detailed information about all available tools and their capabilities, see [docs/tools.md](docs/tools.md). ### Trajectory Recording Trae Agent automatically records detailed execution trajectories for debugging and analysis: ```bash # Auto-generated trajectory file trae-cli run "Debug the authentication module" # Saves to: trajectories/trajectory_YYYYMMDD_HHMMSS.json # Custom trajectory file trae-cli run "Optimize database queries" --trajectory-file optimization_debug.json ``` Trajectory files contain LLM interactions, agent steps, tool usage, and execution metadata. For more details, see [docs/TRAJECTORY_RECORDING.md](docs/TRAJECTORY_RECORDING.md). ## 🔧 Development ### Contributing For contribution guidelines, please refer to [CONTRIBUTING.md](CONTRIBUTING.md). ### Troubleshooting **Import Errors:** ```bash PYTHONPATH=. trae-cli run "your task" ``` **API Key Issues:** ```bash # Verify API keys echo $OPENAI_API_KEY trae-cli show-config ``` **Command Not Found:** ```bash uv run trae-cli run "your task" ``` **Permission Errors:** ```bash chmod +x /path/to/your/project ``` ## 📄 License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## ✍️ Citation ```bibtex @article{traeresearchteam2025traeagent, title={Trae Agent: An LLM-based Agent for Software Engineering with Test-time Scaling}, author={Trae Research Team and Pengfei Gao and Zhao Tian and Xiangxin Meng and Xinchen Wang and Ruida Hu and Yuanan Xiao and Yizhou Liu and Zhao Zhang and Junjie Chen and Cuiyun Gao and Yun Lin and Yingfei Xiong and Chao Peng and Xia Liu}, year={2025}, eprint={2507.23370}, archivePrefix={arXiv}, primaryClass={cs.SE}, url={https://arxiv.org/abs/2507.23370}, } ``` ## 🙏 Acknowledgments We thank Anthropic for building the [anthropic-quickstart](https://github.com/anthropics/anthropic-quickstarts) project that served as a valuable reference for the tool ecosystem.