# deep-learning-with-python-notebooks **Repository Path**: C-Qiyao/deep-learning-with-python-notebooks ## Basic Information - **Project Name**: deep-learning-with-python-notebooks - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2021-11-15 - **Last Updated**: 2022-05-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Companion Jupyter notebooks for the book "Deep Learning with Python" This repository contains Jupyter notebooks implementing the code samples found in the book [Deep Learning with Python, 2nd Edition (Manning Publications)](https://www.manning.com/books/deep-learning-with-python-second-edition?a_aid=keras&a_bid=76564dff). For readability, these notebooks only contain runnable code blocks and section titles, and omit everything else in the book: text paragraphs, figures, and pseudocode. **If you want to be able to follow what's going on, I recommend reading the notebooks side by side with your copy of the book.** These notebooks use TensorFlow 2.6. ## Table of contents * [Chapter 2: The mathematical building blocks of neural networks](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter02_mathematical-building-blocks.ipynb) * [Chapter 3: Introduction to Keras and TensorFlow](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter03_introduction-to-keras-and-tf.ipynb) * [Chapter 4: Getting started with neural networks: classification and regression](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter04_getting-started-with-neural-networks.ipynb) * [Chapter 5: Fundamentals of machine learning](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter05_fundamentals-of-ml.ipynb) * [Chapter 7: Working with Keras: a deep dive](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter07_working-with-keras.ipynb) * [Chapter 8: Introduction to deep learning for computer vision](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter08_intro-to-dl-for-computer-vision.ipynb) * Chapter 9: Advanced deep learning for computer vision - [Part 1: Image segmentation](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter09_part01_image-segmentation.ipynb) - [Part 2: Modern convnet architecture patterns](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter09_part02_modern-convnet-architecture-patterns.ipynb) - [Part 3: Interpreting what convnets learn](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter09_part03_interpreting-what-convnets-learn.ipynb) * [Chapter 10: Deep learning for timeseries](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter10_dl-for-timeseries.ipynb) * Chapter 11: Deep learning for text - [Part 1: Introduction](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter11_part01_introduction.ipynb) - [Part 2: Sequence models](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter11_part02_sequence-models.ipynb) - [Part 3: Transformer](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter11_part03_transformer.ipynb) - [Part 4: Sequence-to-sequence learning](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter11_part04_sequence-to-sequence-learning.ipynb) * Chapter 12: Generative deep learning - [Part 1: Text generation](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter12_part01_text-generation.ipynb) - [Part 2: Deep Dream](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter12_part02_deep-dream.ipynb) - [Part 3: Neural style transfer](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter12_part03_neural-style-transfer.ipynb) - [Part 4: Variational autoencoders](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter12_part04_variational-autoencoders.ipynb) - [Part 5: Generative adversarial networks](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter12_part05_gans.ipynb) * [Chapter 13: Best practices for the real world](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter13_best-practices-for-the-real-world.ipynb) * [Chapter 14: Conclusions](https://colab.research.google.com/github/fchollet/deep-learning-with-python-notebooks/blob/master/chapter14_conclusions.ipynb)