# mpc-cbf **Repository Path**: CBYopenroom/mpc-cbf ## Basic Information - **Project Name**: mpc-cbf - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2025-06-26 - **Last Updated**: 2025-06-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # mpc-cbf Model Predictive Control with discrete-time Control Barrier Functions (MPC-CBF) for a wheeled mobile robot. The MPC-CBF optimization problem is given by: $$\\begin{aligned} \\min\_{u_{t: t+N-1 \\mid t}} \\quad & \\frac{1}{2} \\tilde{x}\_N^T Q_x \\tilde{x}\_N+\\sum\_{k=0}^{N-1} \\frac{1}{2} \\tilde{x}\_k^T Q_x \\tilde{x}\_k+\\frac{1}{2} u\_k^T Q\_u u\_k\\\\ \\textrm{s.t.} \\quad & x\_{t+k+1 \\mid t}=x\_{t+k \\mid t}+f\\left(x\_{t+k \\mid t}, u\_{t+k \\mid t}\\right) \\cdot T\_s, \\quad k=0, . ., N-1,\\\\ & x\_{\\min } \\leq x\_{t+k \\mid t} \\leq x\_{\\max }, \\quad k=0, \\ldots, N-1,\\\\ & u\_{\\min } \\leq u\_{t+k \\mid t} \\leq u\_{\\max }, \\quad k=0, \\ldots, N-1, \\\\ & x\_{t \\mid t}=x\_t, \\\\ & \\Delta h\\left(x\_{t+k \\mid t}, u\_{t+k \\mid t}\\right) \\geq-\\gamma h\\left(x\_{t+k \\mid t}\\right), \\quad k=0, \\ldots, N-1 \\\\ \\end{aligned}$$ where $\\tilde{x}\_k=x\_{des,k} - x\_{k}$. Results ------- ### Scenario 1 **Path comparison for different values of γ for MPC-CBF and with MPC-DC**
Path comparison
Robot path
Trajectories
Robot path
CBF values
Robot path
CBF values
Trajectories
Robot path
Robot path
CBF values