# GL-GIN **Repository Path**: CharlieShark/GL-GIN ## Basic Information - **Project Name**: GL-GIN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-08-13 - **Last Updated**: 2021-08-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # GL-GIN: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and Slot Filling This repository contains the official `PyTorch` implementation of the paper: [Libo Qin](http://ir.hit.edu.cn/~lbqin/), [Fuxuan Wei](https://awake020.github.io/), [Tianbao Xie](https://tianbaoxie.com), [Xiao Xu](https://looperxx.github.io/), [Wanxiang Che](http://ir.hit.edu.cn/~car/chinese.htm), [Ting Liu](http://ir.hit.edu.cn/~liuting/). If you use any source codes or the datasets included in this toolkit in your work, please cite the following paper. The bibtex are listed below:
@misc{qin2021glgin,
      title={GL-GIN: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and Slot Filling}, 
      author={Libo Qin and Fuxuan Wei and Tianbao Xie and Xiao Xu and Wanxiang Che and Ting Liu},
      year={2021},
      eprint={2106.01925},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
In the following, we will guide you how to use this repository step by step. ## Architecture ![framework](pictures/main.png) ## Results ![results](pictures/results.png) ## Preparation Our code is based on PyTorch 1.2 Required python packages: - numpy==1.19.1 - tqdm==4.50.0 - pytorch==1.2.0 - python==3.6.12 - cudatoolkit==9.2 - fitlog==0.7.1 - ordered-set==4.0.2 We highly suggest you using [Anaconda](https://www.anaconda.com/) to manage your python environment. ## How to run it The script **train.py** acts as a main function to the project, you can run the experiments by the following commands. ```Shell # MixATIS_clean dataset (ON GeForce RTX2080TI) python train.py -g -bs=16 -dd=./data/MixATIS_clean -sd=./save/MixATIS_clean -nh=4 -wed=128 -ied=128 -ehd=256 -sdhd=128 -dghd=64 -nldg=2 -sgw=2 -ne=200 # MixSNIPS_clean dataset (ON TITAN Xp) python train.py -g -bs=16 -dd=./data/MixSNIPS_clean -sd=./save/MixSNIPS_clean -nh=8 -wed=64 -ied=128 -ehd=256 -sdhd=128 -dghd=128 -nldg=2 -sgw=1 -ne=100 ``` You can directly load the best models we saved: ```Shell # MixATIS_clean dataset python train.py -g -ne=0 -dd=./data/MixATIS_clean -sd=./save/MixATIS_best # MixSNIPS_clean dataset python train.py -g -ne=0 -dd=./data/MixSNIPS_clean -sd=./save/MixSNIPS_best ``` If you have any question, please issue the project or email [me](mailto:lbqin@ir.hit.edu.cn) or [fuxuanwei](mailto:fuxuanwei@ir.hit.edu.cn) and we will reply you soon.