# soft-Q-learning **Repository Path**: ChenGouXiang/soft-Q-learning ## Basic Information - **Project Name**: soft-Q-learning - **Description**: discrete soft Q learning(SQL) and soft Q imitation learning(SQIL) implementation in pytorch, simple! - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 1 - **Created**: 2020-04-22 - **Last Updated**: 2023-05-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SQL & SQIL the implement of soft Q learning algorithm in pytorch **note that this is for discrete action space** **update SQIL: soft q imitation learning** all code is in one file and easily to follow ## requirment - tensorboardX (for logging, you can delete the logging code if you don't need) - pytorch (>= 1.0, 1.0.1 used in my experiment) - gym in Cartpole-v0 ## Ref [Reinforcement Learning with Deep Energy-Based Policies](https://arxiv.org/abs/1702.08165) [SQIL: Imitation Learning via Reinforcement Learning with Sparse Rewards](https://arxiv.org/abs/1905.11108v3)