# GALD-DGCNet **Repository Path**: Felix660/GALD-DGCNet ## Basic Information - **Project Name**: GALD-DGCNet - **Description**: Source code and models GALD net (BMVC-2019)and Dual-Seg Net (BMVC-2019) - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-07-27 - **Last Updated**: 2024-11-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # GALD-Net-v2 (TIP-2021) Note that our GALD-v2 (improved version of GALD-v1) has been accept by TIP-2021! It achieves 83.5 mIoU using ResNet101 backbone!. # GALD-Net & Dual-Seg Net (BMVC-2019) This is PyTorch re-implementation of GALD-net and Dual-Seg. Both papers were accepted by BMVC-2019 and achieve state-of-the-art results on the Cityscapes and Pascal Context datasets. # High Performance Road Scene Semantic Segmentaion :tada: There is also a co-current repo for Fast Road Scene Semantic Segmentation:[Fast_Seg :zap: ](https://github.com/lxtGH/Fast_Seg) and thanks for your attention :smiley: ## GALDNet ![avatar](./fig/gald.jpeg) ## DualGCNSegNet ![avatar](./fig/dual_seg.jpeg) # Training & Validation ## Requirements pytorch >= 1.1.0 apex opencv-python ## Pretrained Model Baidu Pan Link: https://pan.baidu.com/s/1MWzpkI3PwtnEl1LSOyLrLw passwd: 4lwf Google Drive Link: https://drive.google.com/file/d/1JlERBWT8fHvf-uD36k5-LRZ5taqUbraj/view?usp=sharing, https://drive.google.com/file/d/1gGzz_6ZHUSC4A3SO0yg8-uLE0iiPdO4H/view?usp=sharing ## Training Note that we use apex to speed up training process. At least 8 gpus with 12GB are needed since we need batch size at least 8 and crop size at least 800 on Cityscapes dataset. Please see [`train_distribute.py`](train_distribute.py) for the details. ```bash sh ./exp/train_dual_seg_r50_city_finetrain.sh ``` You will get the model with 79.6~79.8 mIoU. ```bash sh ./exp/train_dual_seg_r101_city_finetrain.sh ``` You will get the model with 80.3~80.4 mIoU. ## Validation ```bash sh ./exp/tes_dualseg_r50_city_finetrain.sh ``` # Trained Model Model trained with the Cityscapes fine dataset: Dual-Seg-net: [ResNet 50](https://drive.google.com/file/d/13HnKtJLyCVK7-e0OtQeLrsJub4IO2t0R/view?usp=sharing), [ResNet 101](https://drive.google.com/file/d/1xgePAXsXGummOfTo3XFPKUoe5-1QZcIy/view?usp=sharing) # Some Advice on Training Please see the [Common.md](Common.md) for the details for using the coarse data training. Or you can refer to our GLAD paper(last part) for reference. ## GALD-Net (BMVC 2019,[arxiv](https://arxiv.org/pdf/1909.07229.pdf)) We propose Global Aggregation then Local Distribution (GALD) scheme to distribute global information to each position adaptively according to the local information around the position. GALD net achieves **top performance** on Cityscapes dataset. Both source code and models will be available soon. The work was done at [DeepMotion AI Research](https://deepmotion.ai/) ## DGCNet (BMVC 2019,[arxiv](https://arxiv.org/abs/1909.06121)) We propose Dual Graph Convolutional Network (DGCNet) to model the global context of the input feature by modelling two orthogonal graphs in a single framework. (Joint work: University of Oxford, Peking University and DeepMotion AI Research) ## Comparisons with state-of-the-art models on Cityscapes dataset Method | Conference | Backbone | mIoU(\%) ---- | ---- | ---- | ---- RefineNet | CVPR2017 | ResNet-101 | 73.6 SAC | ICCV2017 | ResNet-101 | 78.1 PSPNet | CVPR2017 | ResNet-101 | 78.4 DUC-HDC | WACV2018 | ResNet-101 | 77.6 AAF | ECCV2018 | ResNet-101 | 77.1 BiSeNet | ECCV2018 | ResNet-101 | 78.9 PSANet | ECCV2018 | ResNet-101 | 80.1 DFN | CVPR2018 | ResNet-101 | 79.3 DSSPN | CVPR2018 | ResNet-101 | 77.8 DenseASPP | CVPR2018 | DenseNet-161 | 80.6 OCNet| - | ResNet-101 | 81.7 CCNet| ICCV2019 | ResNet-101 | 81.4 GALD-Net | BMVC2019 | ResNet50 |**80.8** GALD-Net | BMVC2019| ResNet101 |**81.8** DGCN-Net | BMVC2019 | ResNet101 | **82.0** GALD-Net(use coarse data) |BMVC2019 | ResNet101 |**82.9** GALD-NetV2(use coarse data) |TIP2021 | ResNet101 |**83.5** GALD-Net(use Mapillary)|BMVC2019 |ResNet101| **83.3** ## Detailed Results are shown GALD-Net: [here](https://www.cityscapes-dataset.com/anonymous-results/?id=5ee0f5098e160aa56db6e9ed01c5fbc73d4ac736b6b61751b50ad31067b0d5bd) GFF-Net:[here](https://www.cityscapes-dataset.com/method-details/?submissionID=3719) Both are (**Single Model Result**) # Citation Please refer our paper for more detail. If you find the codebase useful, please consider citing our paper. ``` @inproceedings{xiangtl_gald title={Global Aggregation then Local Distribution in Fully Convolutional Networks}, author={Li, Xiangtai and Zhang, Li and You, Ansheng and Yang, Maoke and Yang, Kuiyuan and Tong, Yunhai}, booktitle={BMVC2019}, } ``` ``` @inproceedings{zhangli_dgcn title={Dual Graph Convolutional Network for Semantic Segmentation}, author={Zhang, Li(*) and Li, Xiangtai(*) and Arnab, Anurag and Yang, Kuiyuan and Tong, Yunhai and Torr, Philip HS}, booktitle={BMVC2019}, } ``` # License MIT License # Acknowledgement Thanks to previous open-sourced repo: [Encoding](https://github.com/zhanghang1989/PyTorch-Encoding) [CCNet](https://github.com/speedinghzl/CCNet) [TorchSeg](https://github.com/ycszen/TorchSeg) [pytorchseg](https://github.com/meetshah1995/pytorch-semseg)