# NgpSharp **Repository Path**: GDIKodiak/ngp-sharp ## Basic Information - **Project Name**: NgpSharp - **Description**: a implementation of Instant-NGP with C# and CUDA Language. - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-09-30 - **Last Updated**: 2024-09-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # NGP Sharp This is a implementation of Instant-NGP ([Instant-NGP](https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.pdf)) with C# and CUDA Language. project reference [HashNERF](https://github.com/johnny-walker/HashNeRF) and [toch-ngp](https://github.com/ashawkey/torch-ngp) # Project dependence Visual Studio 2022 or Visual Studio Code
.NET 8.0 or heighter
CUDA 12.1 or heighter
libtorch 2.4 release or heighter
TorchSharp-cuda-windows 0.103.0 or heighter
NVIDIA RTX 3070 or heighter
# Build Just into NgpSharp folder and run ~~~ dotnet build ~~~ then wait building finish # About TrainConsole You could use NgpTrainConsole to train ngp model with NeRF blender dataset (like fox or lego dataset), into Program.cs and change datasetPath to your dataset path like: ~~~ public const string DatasetPath = "E:\\(yourdataset)\\lego\\transforms_train.json"; public const string EvalPath = "E:\\(yourdataset)\\lego\\transforms_val.json"; ~~~ then run console and wait trainning finish.
finaly in the outputpath: ~~~ public static string OutputPath = Path.Combine(AppContext.BaseDirectory, "output"); ~~~ you will found eval output image # TODO GUI Supported
LIFF Dataset Supported