# efficientnetv2.pytorch **Repository Path**: GardenLu/efficientnetv2.pytorch ## Basic Information - **Project Name**: efficientnetv2.pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-26 - **Last Updated**: 2021-12-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README **[NEW!]** Check out our latest work [involution](https://github.com/d-li14/involution) accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. --- # PyTorch implementation of EfficientNet V2 Reproduction of EfficientNet V2 architecture as described in [EfficientNetV2: Smaller Models and Faster Training](https://arxiv.org/abs/2104.00298) by Mingxing Tan, Quoc V. Le with the [PyTorch](pytorch.org) framework. ## Models | Architecture | # Parameters | FLOPs | Top-1 Acc. (%) | | ----------------- | ------------ | ------ | -------------------------- | | EfficientNetV2-S | 22.10M | 8.42G @ 384 | | | EfficientNetV2-M | 55.30M | 24.74G @ 480 | | | EfficientNetV2-L | 119.36M | 56.13G @ 480 | | | EfficientNetV2-XL | 208.96M | 93.41G @ 512 | | Stay tuned for ImageNet pre-trained weights. ## Acknowledgement The implementation is heavily borrowed from [HBONet](https://github.com/d-li14/HBONet) or [MobileNetV2](https://github.com/d-li14/mobilenetv2.pytorch), please kindly consider citing the following ``` @InProceedings{Li_2019_ICCV, author = {Li, Duo and Zhou, Aojun and Yao, Anbang}, title = {HBONet: Harmonious Bottleneck on Two Orthogonal Dimensions}, booktitle = {The IEEE International Conference on Computer Vision (ICCV)}, month = {Oct}, year = {2019} } ``` ``` @InProceedings{Sandler_2018_CVPR, author = {Sandler, Mark and Howard, Andrew and Zhu, Menglong and Zhmoginov, Andrey and Chen, Liang-Chieh}, title = {MobileNetV2: Inverted Residuals and Linear Bottlenecks}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2018} } ``` The official [TensorFlow implementation](https://github.com/google/automl/tree/master/efficientnetv2) by [@mingxingtan](https://github.com/mingxingtan).