# Incremental Object Detection via Meta-Learning **Repository Path**: HRJGit/incremental-object-detection-via-meta-learning ## Basic Information - **Project Name**: Incremental Object Detection via Meta-Learning - **Description**: 存放基于元学习的增量目标检测。原仓库:https://github.com/JosephKJ/iOD - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-05-10 - **Last Updated**: 2024-06-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Incremental Object Detection via Meta-Learning #### Published in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) ##### DOI 10.1109/TPAMI.2021.3124133 Early access on IEEE Xplore: [https://ieeexplore.ieee.org/document/9599446](https://ieeexplore.ieee.org/document/9599446) arXiv paper: [https://arxiv.org/abs/2003.08798](https://arxiv.org/abs/2003.08798)
Figure: Qualitative results of our incremental object detector trained in a 10+10 setting where the first task contain instances of aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair and cow, while the second task learns instance from diningtable, dog, horse, motorbike, person, pottedplant, sheep, sofa, train and tvmonitor. Our model is able to detect instances of both tasks alike, without forgetting.
## Installation and setup - Install the Detectron2 library that is packages along with this code base. See [INSTALL.md](INSTALL.md). - Download and extract Pascal VOC 2007 to `./datasets/VOC2007/` - Use the starter script: `run.sh` ## Trained Models and Logs | Setting | Reported mAP | Reproduced mAP | Commands | Models and logs | |:-------:|:------------:|:--------------:|:--------:|:---------------:| | 19+1 | 70.2 | 70.4 | [run.sh](https://github.com/JosephKJ/iOD/blob/main/run.sh#L1-L8) | [Google Drive](https://drive.google.com/file/d/1sW-aZ9crRFjgbErtgXNQ8hO67WLKYAAn/view?usp=sharing) | | 15+5 | 67.8 | 69.6 | [run.sh](https://github.com/JosephKJ/iOD/blob/main/run.sh#L11-L19) | [Google Drive](https://drive.google.com/file/d/1E8m4VrrKmNYT1Zba0MwaI3ZjztrLobcA/view?usp=sharing) | | 10+10 | 66.3 | 67.3 | [run.sh](https://github.com/JosephKJ/iOD/blob/main/run.sh#L22-L30) | [Google Drive](https://drive.google.com/file/d/1LH7OY-uMifl2gwCFEgm6U5h_Xfh1nPcH/view?usp=sharing) | ##### Configurations with which the above results were reproduced: - Python version: 3.6.7 - PyTorch version: 1.3.0 - CUDA version: 11.0 - GPUs: 4 x NVIDIA GTX 1080-ti ## Acknowledgement The code is build on top of Detectron2 library. ## Citation If you find our research useful, please consider citing us: ```BibTeX @ARTICLE {joseph2021incremental, author = {Joseph. KJ and Jathushan. Rajasegaran and Salman. Khan and Fahad. Khan and Vineeth. N Balasubramanian}, journal = {IEEE Transactions on Pattern Analysis & Machine Intelligence}, title = {Incremental Object Detection via Meta-Learning}, year = {2021}, issn = {1939-3539}, doi = {10.1109/TPAMI.2021.3124133}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, month = {nov} } ```