# MobileNet_YOLO_linux **Repository Path**: HaiFengZhiJia/MobileNet_YOLO_linux ## Basic Information - **Project Name**: MobileNet_YOLO_linux - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-21 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## MobileNet-YOLO Caffe A caffe implementation of MobileNet-YOLO detection network , train on 07+12 , test on VOC2007 Network|mAP|Resolution|Download|NetScope|Inference time (GTX 1080)|Inference time (i5-7500) :---:|:---:|:---:|:---:|:---:|:---:|:---: MobileNetV2-YOLOv3|70.7|352|[caffemodel](models/mobilenetv2_voc/yolo_lite)|[graph](http://ethereon.github.io/netscope/#/gist/495618dacbfca0ed2256cce9bf221b1f)|[6.65 ms](benchmark/test.log)|217 ms * inference time was log from [script](benchmark/test_yolov3_lite.sh) , does not include pre-processing * the [benchmark](/benchmark) of cpu performance on Tencent/ncnn framework * the deploy model was made by [merge_bn.py](https://github.com/Robert-JunWang/Pelee/blob/master/tools/gen_merged_model.py), set eps = your prototxt batchnorm eps * old models please see [here](https://github.com/eric612/MobileNet-YOLO/tree/83827a038efdd891f4d01bf711e520bf2539c036) This project also support ssd framework , and here lists the difference from ssd caffe * Multi-scale training , you can select input resoluton when inference * Modified from last update caffe (2018) * Support multi-task model * [pelee + driverable map](data/bdd100k) ## Update 1. CODE UPDATED FOR OPENCV 3 2. Channel pruning ### CNN Analyzer Use this [tool](https://dgschwend.github.io/netscope/quickstart.html) to compare macc and param , train on 07+12 , test on VOC2007 network|mAP|resolution|macc|param|pruned|IOU_THRESH|GIOU :---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| MobileNetV2-YOLOv3|0.707|352|1.22G|4.05M|N|N|N| MobileNetV2-YOLOv3|[0.715](https://drive.google.com/open?id=1YBJOhc14qfOALf2R5kWaDTa1p722xD2Z)|352|1.22G|4.05M|N|Y|Y| MobileNetV2-YOLOv3|0.702|352|1.01G|2.88M|Y|N|N| [Pelee-SSD](https://github.com/Robert-JunWang/Pelee)|0.709|304|1.2G|5.42M|N|N|N| [Mobilenet-SSD](https://github.com/chuanqi305/MobileNet-SSD)|0.68|300|1.21G|5.43M|N|N|N| [MobilenetV2-SSD-lite](models/mobilenetv2_voc/ssd_lite)|0.709|336|1.10G|[5.2M](https://drive.google.com/open?id=1Lb9LJOrl5fYZ7Mp65beBQ44d6cH_vlbv)|N|N|N| * MobileNetV2-YOLOv3 and MobilenetV2-SSD-lite were not offcial model ### Coverted TensorRT models [TensorRT-Yolov3-models](https://github.com/eric612/TensorRT-Yolov3-models) [Pelee-Driverable_Maps](https://youtu.be/nndFtIPMy20), run 89 ms on [jetson nano](https://github.com/eric612/Jetson-nano-benchmark) , [running project](https://github.com/eric612/Pelee-Seg-TensorRT) ### YOLO Segmentation [How to use](https://github.com/eric612/MobileNet-YOLO/tree/master/data/cityscapes) ## Windows Version [Caffe-YOLOv3-Windows](https://github.com/eric612/Caffe-YOLOv2-Windows) ### Oringinal darknet-yolov3 [Converter](models/darknet_yolov3) test on coco_minival_lmdb (IOU 0.5) Network|mAP|Resolution|Download|NetScope| :---:|:---:|:---:|:---:|:---: yolov3|54.2|416|[caffemodel](https://drive.google.com/file/d/1nYgjOg8o48qQ3Cw47CamERgJVgLlo-Cu/view?usp=sharing)|[graph](http://ethereon.github.io/netscope/#/gist/59c75a50e5b91d6dd80a879df3cfaf55) yolov3-spp|59.8|608|[caffemodel](https://drive.google.com/file/d/1eEFXWPFnCt6fWtmS6zTsPkAQgW0VFkt7/view?usp=sharing)|[graph](http://ethereon.github.io/netscope/#/gist/71edbfacf4d39c56f2d82cbcb739ae38) ### Model VisulizationTool Supported on [Netron](https://github.com/lutzroeder/netron) , [browser](https://lutzroeder.github.io/netron/) version ### Build , Run and Training See [wiki](https://github.com/eric612/MobileNet-YOLO/wiki) See [docker](https://hub.docker.com/r/eric612/mobilenet-yolo) ## License and Citation Please cite MobileNet-YOLO in your publications if it helps your research: @article{MobileNet-YOLO, Author = {eric612 , Avisonic , ELAN}, Year = {2018} } ## Reference > https://github.com/weiliu89/caffe/tree/ssd > https://pjreddie.com/darknet/yolo/ > https://github.com/chuanqi305/MobileNet-SSD > https://github.com/gklz1982/caffe-yolov2 > https://github.com/yonghenglh6/DepthwiseConvolution > https://github.com/alexgkendall/caffe-segnet > https://github.com/BVLC/caffe/pull/6384/commits/4d2400e7ae692b25f034f02ff8e8cd3621725f5c > https://www.cityscapes-dataset.com/ > https://github.com/TuSimple/tusimple-benchmark/wiki > https://github.com/Robert-JunWang/Pelee > https://github.com/hujie-frank/SENet > https://github.com/lusenkong/Caffemodel_Compress Cudnn convolution > https://github.com/chuanqi305/MobileNetv2-SSDLite/tree/master/src ## Acknowledgements https://github.com/AlexeyAB/darknet