# LIME-RNN **Repository Path**: HaixuHe/lime-rnn ## Basic Information - **Project Name**: LIME-RNN - **Description**: LIME-RNN论文代码 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2021-12-12 - **Last Updated**: 2022-04-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # End-to-End Incomplete Time Series Modeling from Linear Memory of Latent Variables The code for paper "[End-to-End Incomplete Time Series Modeling from Linear Memory of Latent Variables](https://ieeexplore.ieee.org/document/8685795)" accepted by IEEE Transactions on Cybernetics. # Descriptions The demo for dataset 'SCITOS G5' with 50% missing ratio The published imputation result: 0.170 data/raw.txt: raw_data for evaluation data/miss_data.txt: missing_data tf_version: 1.11.0 python_version: 2.7.17 # Usage Usage: python LIMELSTM.py ## Reference ``` @ARTICLE{Ma2019end, author={Q. {Ma} and S. {Li} and L. {Shen} and J. {Wang} and J. {Wei} and Z. {Yu} and G. W. {Cottrell}}, journal={IEEE Transactions on Cybernetics}, title={End-to-End Incomplete Time-Series Modeling From Linear Memory of Latent Variables}, year={2019}, pages={1-13}, ISSN={2168-2267} } ```