# IR2-Net **Repository Path**: Hanwen-Hu/IR2-Net ## Basic Information - **Project Name**: IR2-Net - **Description**: Iterative Time Series Imputation by Maintaining Dependency Consistency (ACM TKDD 2024) - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: https://dl.acm.org/doi/10.1145/3698107 - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-08-27 - **Last Updated**: 2024-12-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: Data-Mining, Time-Series-Analysis ## README # Iterative Time Series Imputation by Maintaining Dependency Consistency ## Datasets This repository contains the code of `IR^2-Net` with four datasets. Air Quality, Human Activity, Traffic Speed are completely available, but Solar Energy dataset should be firstly unzipped. ## Run If you want to reproduce the experiment, please run "main.py" with Pycharm or with command ```angular2html python3 main.py ``` The default dataset is Air Quality with 20% missing data. For the other cases, please add arguments such as ```angular2html python3 main.py -model GAN -dataset traffic -r_miss 0.4 -cuda_id 0 -use_irm 1 -iter_time 2 ``` The argument `use_irm` determines whether to use the incomplete representation mechanism, while `iter_time` represents the time of reconstruction, which are two main contributions of this work. ## Contact If you have any questions or suggestions for our paper or codes, please contact us. Email: hanwen_hu@sjtu.edu.cn.