# DCGAN-tensorflow **Repository Path**: Harry6011/DCGAN-tensorflow ## Basic Information - **Project Name**: DCGAN-tensorflow - **Description**: A tensorflow implementation of "Deep Convolutional Generative Adversarial Networks" - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-06-29 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DCGAN in Tensorflow ## Prerequisites - Python 2.7 or Python 3.3+ - [Tensorflow 0.12.1](https://github.com/tensorflow/tensorflow/tree/r0.12) (Notice that it is not the latest version) - [SciPy](http://www.scipy.org/install.html) - [pillow](https://github.com/python-pillow/Pillow) - CUDA 8.0 Add Cuda Path to bashrc first ```bash export LD_LIBRARY_PATH="/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH" ``` We recommend you to install anaconda. Here we write a simple script for you to install the dependence by anaconda. ```python # install env (especially for old version Tensorflow) conda env create -f dcgan.yml # activate env, then you can run code in this env without downgrading the outside Tensorflow. source activate dcgan ``` ### Let's start ### 1.Train ```bash mkdir data ln -rs your_dataset_path/DukeMTMC-reID/bounding_box_train ./data/duke_train python main.py --dataset duke_train --train --input_height 128 --output_height 128 --options 1 ``` `duke_train` is the dir path which contains images. Here I use the (DukeMTMC-reID)[https://github.com/layumi/DukeMTMC-reID_evaluation] training set. You can change it to your dataset path. ### 2.Test ```bash python main.py --dataset duke_train --options 5 --output_path duke_256_48000 --sample_size 48000 --input_height 128 --output_height 128 ``` It will use your trained model and generate 48000 images for the following semi-supervised training.