Ollama Copilot
is a UI for Ollama on Windows that uses Windows Forms.
Copilot responses can be automatically forward to other applications just like other paid copilots.
The Ollama Copilot
has other features like speech to text, text to speech, and OCR all using free open-source software.
Check out Releases for the latest installer.
Overview of Ollama Copilot
Ollama Copilot v1.0.0
Youtube Transcripts v1.0.1
Speech to Text v1.0.2
Text to Speech v1.0.3
Optical Character Recognition v1.0.4
Ollama Copilot Installer (Windows) - Ollama Copilot v1.0.4
Note you can skip the Visual Studio Build dependencies if you used the Ollama Copilot Installer
.
Open WinForm_Ollama_Copilot.sln
in Visual Studio 2022.
Restore NuGet Packages
Install the Ollama Windows preview
Install the llama2
model to enable the Chat API
ollama run llama2
llava
modelollama run llava
gemma
model (7B default)ollama run gemma
gemma
model (7B)ollama rm gemma
gemma
2B modelollama run gemma:2b
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
llama2
model to enable the Chat API.docker exec -it ollama ollama run llama2
llava
modeldocker exec -it ollama ollama run llava
gemma
modeldocker exec -it ollama ollama run gemma
mixtral
model (requires 48GB of VRAM)docker exec -it ollama ollama run mixtral
Install Ubuntu 22.04.3 LTS with WSL2
Setup Ubuntu for hosting the local Whisper server
sudo apt-get update
sudo apt install python3-pip
sudo apt install uvicorn
pip3 install FastAPI[all]
pip3 install uvloop
pip3 install numpy
sudo apt-get install curl
sudo apt-get install ffmpeg
pip3 install ffmpeg
pip3 install scipy
pip3 install git+https://github.com/openai/whisper.git
python3 -m uvicorn WhisperServer:app --reload --port 11437
There are five model sizes, four with English-only versions, offering speed and accuracy tradeoffs. Below are the names of the available models and their approximate memory requirements and inference speed relative to the large model; actual speed may vary depending on many factors including the available hardware.
Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
---|---|---|---|---|---|
tiny | 39 M | tiny.en |
tiny |
~1 GB | ~32x |
base | 74 M | base.en |
base |
~1 GB | ~16x |
small | 244 M | small.en |
small |
~2 GB | ~6x |
medium | 769 M | medium.en |
medium |
~5 GB | ~2x |
large | 1550 M | N/A | large |
~10 GB | 1x |
python3 WhisperTest.py audio.mp3
pip3 install uvicorn
pip3 install FastAPI[all]
pip3 install pyttsx3
python3 -m uvicorn Pyttsx3Server:app --reload --port 11438
"Prompt clear" - Clears the prompt text area
"Prompt submit" - Submits the prompt
"Response play" - Speaks the response
pytesseract
pip install pytesseract
Install Tesseract-OCR - Installation
Windows Installer - Tesseract at UB Mannheim
Add Tesseract to your path: C:\Program Files\Tesseract-OCR
Run the server
python3 -m uvicorn TesseractOCRServer:app --reload --port 11439 --log-level error
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。