# FLARE **Repository Path**: Hiwen/FLARE ## Basic Information - **Project Name**: FLARE - **Description**: https://github.com/ant-research/FLARE - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-02-21 - **Last Updated**: 2025-02-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views [![Website](https://img.shields.io/website-up-down-green-red/http/shields.io.svg)](https://zhanghe3z.github.io/FLARE/) [![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97-Hugging%20Face-yellow)](https://huggingface.co/AntResearch/FLARE) [![Video](https://img.shields.io/badge/Video-Demo-red)](https://zhanghe3z.github.io/FLARE/videos/teaser_video.mp4) Official implementation of **FLARE** (arXiv 2025) - a feed-forward model for joint camera pose estimation, 3D reconstruction and novel view synthesis from sparse uncalibrated views. ![Teaser Video](./assets/teaser.jpg) - [📖 Overview](#-overview) - [🛠️ TODO List](#-todo-list) - [🌍 Installation](#-installation) - [💿 Checkpoints](#-checkpoints) - [🎯 Run a Demo (Point Cloud and Camera Pose Estimation) ](#-run-a-demo-point-cloud-and-camera-pose-estimation) - [👀 Visualization ](#-visualization) - [📜 Citation ](#-citation) ## 📖 Overview We present FLARE, a feed-forward model that simultaneously estimates high-quality camera poses, 3D geometry, and appearance from as few as 2-8 uncalibrated images. Our cascaded learning paradigm: 1. **Camera Pose Estimation**: Directly regress camera poses without bundle adjustment 2. **Geometry Reconstruction**: Decompose geometry reconstruction into two simpler sub-problems 3. **Appearance Modeling**: Enable photorealistic novel view synthesis via 3D Gaussians Achieves SOTA performance with inference times <0.5 seconds! ## 🛠️ TODO List - [x] Release point cloud and camera pose estimation code. - [ ] Release novel view synthesis code. (~2 weeks) - [ ] Release evaluation code. (~2 weeks) - [ ] Release training code. - [ ] Release data processing code. ## 🌍 Installation ``` conda create -n flare python=3.8 conda activate flare conda install pytorch torchvision pytorch-cuda=12.1 -c pytorch -c nvidia # use the correct version of cuda for your system pip install -r requirements.txt conda uninstall ffmpeg conda install -c conda-forge ffmpeg ``` ## 💿 Checkpoints Download the checkpoint from [huggingface](https://huggingface.co/AntResearch/FLARE/blob/main/geometry_pose.pth) and place it in the /checkpoints/geometry_pose.pth directory. ## 🎯 Run a Demo (Point Cloud and Camera Pose Estimation) ``` sh run_pose_pointcloud.sh ``` ``` torchrun --nproc_per_node=1 run_pose_pointcloud.py \ --test_dataset "1 @ CustomDataset(split='train', ROOT='Your/Data/Path', resolution=(512,384), seed=1, num_views=8, gt_num_image=0, aug_portrait_or_landscape=False, sequential_input=False)" \ --model "AsymmetricMASt3R(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='catmlp+dpt', output_mode='pts3d+desc24', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12, two_confs=True, desc_conf_mode=('exp', 0, inf))" \ --pretrained "Your/Checkpoint/Path" \ --test_criterion "MeshOutput(sam=False)" --output_dir "log/" --amp 1 --seed 1 --num_workers 0 ``` ## 👀 Visualization ``` sh ./visualizer/vis.sh ``` ``` CUDA_VISIBLE_DEVICES=0 python visualizer/run_vis.py --result_npz data/mesh/IMG_1511.HEIC.JPG.JPG/pred.npz --results_folder data/mesh/IMG_1511.HEIC.JPG.JPG/ ``` ## 📜 Citation ```bibtex @misc{zhang2025flarefeedforwardgeometryappearance, title={FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views}, author={Shangzhan Zhang and Jianyuan Wang and Yinghao Xu and Nan Xue and Christian Rupprecht and Xiaowei Zhou and Yujun Shen and Gordon Wetzstein}, year={2025}, eprint={2502.12138}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2502.12138}, }