# DRRN_CVPR17 **Repository Path**: Hoyt_Hu/DRRN_CVPR17 ## Basic Information - **Project Name**: DRRN_CVPR17 - **Description**: Code for our CVPR'17 paper "Image Super-Resolution via Deep Recursive Residual Network" - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-03-12 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DRRN ### [[Paper]](http://cvlab.cse.msu.edu/pdfs/Tai_Yang_Liu_CVPR2017.pdf)[[Project]](http://cvlab.cse.msu.edu/project-super-resolution.html) ### Citation If you find DRRN useful in your research, please consider citing: @inproceedings{Tai-DRRN-2017, title={Image Super-Resolution via Deep Recursive Residual Network}, author={Tai, Ying and Yang, Jian and Liu, Xiaoming }, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, year={2017} } # Other implementation [[DRRN-tensorflow]](https://github.com/LoSealL/VideoSuperResolution) by LoSealL [[DRRN-pytorch]](https://github.com/jt827859032/DRRN-pytorch) by yun_yang [[DRRN-pytorch]](https://github.com/yiyang7/cs231n_proj) by yiyang7 # Implement adjustable gradient clipping modify sgd_solver.cpp in your_caffe_root/src/caffe/solvers/, where we add the following codes in funciton ClipGradients(): Dtype rate = GetLearningRate(); const Dtype clip_gradients = this->param_.clip_gradients()/rate; # Training 1. Preparing training/validation data using the files: generate_trainingset_x234/generate_testingset_x234 in "data" folder. "Train_291" folder contains 291 training images and "Set5" folder is a popular benchmark dataset. 2. We release two DRRN architectures: DRRN_B1U9_20C128 and DRRN_B1U25_52C128 in "caffe_files" folder. Choose either one to do training. E.g., run ./train_DRRN_B1U9_20C128.sh # Test 1. Remember to compile the matlab wrapper: make matcaffe, since we use matlab to do testing. 2. We release two pretrained models: DRRN_B1U9_20C128 and DRRN_B1U25_52C128 in "model" folder. Choose either one to do testing on benchmark Set5. E.g., run file ./test/DRRN_B1U9_20C128/test_DRRN_B1U9, the results are stored in "results" folder, with both reconstructed images and PSNR/SSIM/IFCs. # Benchmark results ## Quantitative results ### PSNR/SSIMs ![](figures/Benchmark_results.PNG) ### IFCs ![](figures/IFCs.PNG) ## Qualitative results ### Scale factor x2 ![](figures/x2_supp.jpg) ### Scale factor x3 ![](figures/x3_supp.jpg) ### Scale factor x4 ![](figures/x4_supp.jpg)