# StereoNet **Repository Path**: Hoyt_Hu/StereoNet ## Basic Information - **Project Name**: StereoNet - **Description**: StereoNet: Guided Hierarchical Refinement for Real-Time Edge-Aware Depth prediction model in pytorch. ECCV2018 - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-03-12 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ### StereoNet: Guided Hierarchical Refinement for Real-Time Edge-Aware Depth prediction model in pytorch. ECCV2018 ### If you want to communicate with me about the StereoNet, please concact me without hesitating. My email: ### xuanyili.edu@gmail.com ### my model result Now, my model's speed can achieve 60-25FPS on 540*960 img with the best result of 1.87 EPE_all with 16X multi model, 1.95 EPE_all with 16X single model 1.32 EPE_all with 8X single model 1.48EPE_all with 8X multi model on sceneflow dataset by end-to-end training. the following are the side outputs and the prediction example #### train example ![train example](https://github.com/meteorshowers/StereoNet/blob/master/doc/iter-21200.jpg) #### test example(outputs of 16single model and GT) ![test example](https://github.com/meteorshowers/StereoNet/blob/master/doc/iter-70.jpg) ### Citation * refercence[1] If you find our work useful in your research, please consider citing: @inproceedings{khamis2018stereonet, title={Stereonet: Guided hierarchical refinement for real-time edge-aware depth prediction}, author={Khamis, Sameh and Fanello, Sean and Rhemann, Christoph and Kowdle, Adarsh and Valentin, Julien and Izadi, Shahram}, booktitle={Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany}, pages={8--14}, year={2018} } ### Introduction I implement the real-time stereo model according to the StereoNet model in pytorch. The speed can reach 30FPS with top performance. The speed can reach 60FPS with lower performance. | Method |EPE_all on sceneflow dataset |EPE_all on kitti2012 dataset|EPE_all on kitti2015 dataset| |:---|:---:|:---:|:---:| |ours(16X multi)| 1.32| | | | Reference[1]| 1.525 | | | ### License * Our code is released under MIT License (see LICENSE file for details). ### Installaton * python3.6 * pytorch0.4 ### Usage * run main8Xmulti.py ### Updates * finetune the performance beating the original paper. ### To do * optimize the inference speed ### pretrain model * coming soon. ### Thanks * Thanks to Sameh Khamis' help