# Function-Approximation-and-Adaptive-PID-Gain-Tuning-using-Neural-Networks-and-Reinforcement-Learning **Repository Path**: IMdean/Function-Approximation-and-Adaptive-PID-Gain-Tuning-using-Neural-Networks-and-Reinforcement-Learning ## Basic Information - **Project Name**: Function-Approximation-and-Adaptive-PID-Gain-Tuning-using-Neural-Networks-and-Reinforcement-Learning - **Description**: 神经网络用于调整PID - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-25 - **Last Updated**: 2021-11-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Function-Approximation-and-Adaptive-PID-Gain-Tuning-using-Neural-Networks-and-Actor-Critic-algorithm System Identification and Self-Tuning PID Control using NN and reinforcement learning Notes ---> PID_FA_NN.m : this file is Fucntion approximation using Neural Networks with Adaptive PID Gains You can read the attached "PID Neural Networks.pdf" file for learning algorithm and structures. ![PID_FA_NN](https://user-images.githubusercontent.com/60617560/129597840-e8d9f399-4de6-4a1a-8218-b4fd27fd5570.png) ![PID_gains](https://user-images.githubusercontent.com/60617560/129597930-453bcfa4-9962-4000-905a-179b3a898e61.png) FA_A2C.m : Function Approximation using Actor-Critic Algorithm ![FA_A2C](https://user-images.githubusercontent.com/60617560/129596768-e3680e6c-bc19-4833-b5cb-73681c8fb1ef.png) If you want to change the dynamic system, Please just change the function "NonLinDynamic" in .m file.