# basic_reinforcement_learning **Repository Path**: JiweiTian2019_admin/basic_reinforcement_learning ## Basic Information - **Project Name**: basic_reinforcement_learning - **Description**: An introductory series to Reinforcement Learning (RL) with comprehensive step-by-step tutorials. - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2020-07-11 - **Last Updated**: 2021-03-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Basic Reinforcement Learning (RL) ============================ This repository aims to provide an introduction series to reinforcement learning (RL) by delivering a walkthough on how to code different RL techniques. ### Background review A quick background review of RL is available [here](BACKGROUND.md). ### Tutorials: - [x] Tutorial 1: [Q-learning](tutorial1/README.md) - [x] Tutorial 2: [SARSA](tutorial2/README.md) - [x] Tutorial 3: [Exploring OpenAI gym](tutorial3/README.md) - [x] Tutorial 4: [Q-learning in OpenAI gym](tutorial4/README.md) - [x] Tutorial 5: [Deep Q-learning (DQN)](tutorial5/README.md) - [x] Tutorial 6: [Deep Convolutional Q-learning](tutorial6/README.md) - [x] Tutorial 7: [Reinforcement Learning with ROS and Gazebo](tutorial7/README.md) - [ ] ~~Tutorial 8: [Reinforcement Learning in DOOM](tutorial8/README.md)~~ (**unfinished**) - [x] Tutorial 9: [Deep Deterministic Policy Gradients (DDPG)](tutorial9/README.md) - [ ] ~~Tutorial 10: [Guided Policy Search (GPS)](tutorial10/README.md)~~ (**unfinished**) - [ ] Tutorial 11: [A review of different AI techniques for RL](tutorial11/README.md) (**WIP**) - [x] Tutorial 12: [Reviewing Policy Gradient methods](tutorial12/README.md) - [ ] ~~Tutorial 13: [Continuous-state spaces with DQN](tutorial13/README.md)~~ (**merged**) - [x] Tutorial 14: [Benchmarking RL techniques](tutorial14/README.md) - [ ] ~~Tutorial 15: [Reviewing Vanilla Policy Gradient (VPG)](tutorial15/README.md)~~ (**failed miserably**) ### References: - Chris Watkins, Learning from Delayed Rewards, Cambridge, 1989 ([thesis](http://www.cs.rhul.ac.uk/home/chrisw/new_thesis.pdf)) - Awesome Reinforcement Learning repository, https://github.com/aikorea/awesome-rl - Reinforcement learning CS9417ML, School of Computer Science & Engineering, UNSW Sydney, http://www.cse.unsw.edu.au/~cs9417ml/RL1/index.html - Reinforcement learning blog posts, https://studywolf.wordpress.com/2012/11/25/reinforcement-learning-q-learning-and-exploration/ - OpenAI gym docs, https://gym.openai.com/docs - Vincent Bons implementations, https://gist.github.com/wingedsheep - David Silver's Deep Reinforcement Learning talk, http://videolectures.net/rldm2015_silver_reinforcement_learning/ - Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016). OpenAI Gym. arXiv preprint arXiv:1606.01540. - https://sites.google.com/view/deep-rl-bootcamp/lectures - https://github.com/vmayoral/gym-cryptocurrencies