# GT-U-Net **Repository Path**: Kent0n/GT-U-Ne ## Basic Information - **Project Name**: GT-U-Net - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-01 - **Last Updated**: 2021-12-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## _Retinal vessel segmentation based on GT-UNet_ ### Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transformer Network (GT-UNet), including data preprocessing, model training and testing, visualization, etc. ### Requirements The main package and version of the python environment are as follows ``` # Name Version python 3.7.9 pytorch 1.7.0 torchvision 0.8.0 cudatoolkit 10.2.89 cudnn 7.6.5 matplotlib 3.3.2 numpy 1.19.2 opencv 3.4.2 pandas 1.1.3 pillow 8.0.1 scikit-learn 0.23.2 scipy 1.5.2 tensorboardX 2.1 tqdm 4.54.1 ``` --- ## Usage The project structure and intention are as follows : ``` VesselSeg-Pytorch # Source code ├── config.py # Configuration information ├── lib # Function library │ ├── common.py │ ├── dataset.py # Dataset class to load training data │ ├── datasetV2.py # Dataset class to load training data with lower memory │ ├── extract_patches.py # Extract training and test samples │ ├── help_functions.py # │ ├── __init__.py │ ├── logger.py # To create log │ ├── losses │ ├── metrics.py # Evaluation metrics │ └── pre_processing.py # Data preprocessing ├── models # All models are created in this folder │ ├── __init__.py │ ├── nn │ └── GT-UNet.py ├── prepare_dataset # Prepare the dataset (organize the image path of the dataset) │ ├── chasedb1.py │ ├── data_path_list # image path of dataset │ ├── drive.py │ └── stare.py ├── tools # some tools │ ├── ablation_plot.py │ ├── ablation_plot_with_detail.py │ ├── merge_k-flod_plot.py │ └── visualization ├── function.py # Creating dataloader, training and validation functions ├── test.py # Test file └── train.py # Train file ``` ### Training model Please confirm the configuration information in the `config.py`. Pay special attention to the `train_data_path_list` and `test_data_path_list`. Then, running: ``` python train.py ``` You can configure the training information in config, or modify the configuration parameters using the command line. The training results will be saved to the corresponding directory(save name) in the `experiments` folder. ### 3) Testing model The test process also needs to specify parameters in `config.py`. You can also modify the parameters through the command line, running: ``` python test.py ``` The above command loads the `best_model.pth` in `./experiments/GT-UNet_vessel_seg` and performs a performance test on the testset, and its test results are saved in the same folder.