# turicreate **Repository Path**: LYLearn/turicreate ## Basic Information - **Project Name**: turicreate - **Description**: 苹果公开Turi Create框架,推动机器学习 - **Primary Language**: C++ - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2017-12-11 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Quick Links: [Installation](#supported-platforms) | [Documentation](#documentation) | [v5.0 Beta](#version-50-beta) Turi Create # Turi Create Turi Create simplifies the development of custom machine learning models. You don't have to be a machine learning expert to add recommendations, object detection, image classification, image similarity or activity classification to your app. * **Easy-to-use:** Focus on tasks instead of algorithms * **Visual:** Built-in, streaming visualizations to explore your data * **Flexible:** Supports text, images, audio, video and sensor data * **Fast and Scalable:** Work with large datasets on a single machine * **Ready To Deploy:** Export models to Core ML for use in iOS, macOS, watchOS, and tvOS apps With Turi Create, you can accomplish many common ML tasks: | ML Task | Description | |:------------------------:|:--------------------------------:| | [Recommender](https://apple.github.io/turicreate/docs/userguide/recommender/) | Personalize choices for users | | [Image Classification](https://apple.github.io/turicreate/docs/userguide/image_classifier/) | Label images | | [Object Detection](https://apple.github.io/turicreate/docs/userguide/object_detection/) | Recognize objects within images | | [Style Transfer](https://apple.github.io/turicreate/docs/userguide/style_transfer/) | Stylize images | | [Activity Classification](https://apple.github.io/turicreate/docs/userguide/activity_classifier/) | Detect an activity using sensors | | [Image Similarity](https://apple.github.io/turicreate/docs/userguide/image_similarity/) | Find similar images | | [Classifiers](https://apple.github.io/turicreate/docs/userguide/supervised-learning/classifier.html) | Predict a label | | [Regression](https://apple.github.io/turicreate/docs/userguide/supervised-learning/regression.html) | Predict numeric values | | [Clustering](https://apple.github.io/turicreate/docs/userguide/clustering/) | Group similar datapoints together| | [Text Classifier](https://apple.github.io/turicreate/docs/userguide/text_classifier/) | Analyze sentiment of messages | Example: Image classifier with a few lines of code -------------------------------------------------- If you want your app to recognize specific objects in images, you can build your own model with just a few lines of code: ```python import turicreate as tc # Load data data = tc.SFrame('photoLabel.sframe') # Create a model model = tc.image_classifier.create(data, target='photoLabel') # Make predictions predictions = model.predict(data) # Export to Core ML model.export_coreml('MyClassifier.mlmodel') ``` It's easy to use the resulting model in an [iOS application](https://developer.apple.com/documentation/vision/classifying_images_with_vision_and_core_ml):

Turi Create

Supported Platforms ------------------- Turi Create supports: * macOS 10.12+ * Linux (with glibc 2.12+) * Windows 10 (via WSL) System Requirements ------------------- * Python 2.7, 3.5, 3.6 * x86\_64 architecture Installation ------------ For detailed instructions for different varieties of Linux see [LINUX\_INSTALL.md](LINUX_INSTALL.md). For common installation issues see [INSTALL\_ISSUES.md](INSTALL_ISSUES.md). We recommend using virtualenv to use, install, or build Turi Create. ```shell pip install virtualenv ``` The method for installing *Turi Create* follows the [standard python package installation steps](https://packaging.python.org/installing/). To create and activate a Python virtual environment called `venv` follow these steps: ```shell # Create a Python virtual environment cd ~ virtualenv venv # Activate your virtual environment source ~/venv/bin/activate ``` Alternatively, if you are using [Anaconda](https://www.anaconda.com/what-is-anaconda/), you may use its virtual environment: ```shell conda create -n venv python=2.7 anaconda source activate venv ``` To install `Turi Create` within your virtual environment: ```shell (venv) pip install -U turicreate ``` Version 5.0 (Beta) ----------- Turi Create 5.0 -- now in beta -- includes: * GPU Acceleration on Macs (10.14+) * New Task: Style Transfer * Recommender model deployment * Vision Feature Print model deployment To install the 5.0 beta into your virtual environment, use: ```shell (venv) pip install turicreate==5.0b1 ``` Documentation ------------- The package [User Guide](https://apple.github.io/turicreate/docs/userguide) and [API Docs](https://apple.github.io/turicreate/docs/api) contain more details on how to use Turi Create. GPU Support ----------- Turi Create **does not require a GPU**, but certain models can be accelerated 9-13x when utilizing a GPU. Turi Create automatically utilizes Mac GPUs for the following tasks (requires macOS 10.13+): * Image Classification * Object Detection * Activity Classification * Image Similarity For linux GPU support, see [LinuxGPU.md](LinuxGPU.md) Building From Source --------------------- If you want to build Turi Create from source, see [BUILD.md](BUILD.md). Contributing ------------ See [CONTRIBUTING.md](CONTRIBUTING.md).