# PlotNeuralNet **Repository Path**: Lotayou/PlotNeuralNet ## Basic Information - **Project Name**: PlotNeuralNet - **Description**: Latex code for making neural networks diagrams - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-05-23 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PlotNeuralNet [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2526396.svg)](https://doi.org/10.5281/zenodo.2526396) Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, lets consolidate any improvements that you make and fix any bugs to help more people with this code. ## TODO - [X] Python interfaz - [ ] Add easy legend functionality - [ ] Add more layer shapes like TruncatedPyramid, 2DSheet etc - [ ] Add examples for RNN and likes. ## Latex Usage see examples ## PyUsage mkdir my_project cd my_project vim my_arch.py import sys sys.path.append('../') from pycore.tikzeng import * # defined your arch arch = [ to_head( '..' ), to_cor(), to_begin(), to_Conv("conv1", 512, 64, offset="(0,0,0)", to="(0,0,0)", height=64, depth=64, width=2 ), to_Pool("pool1", offset="(0,0,0)", to="(conv1-east)"), to_Conv("conv2", 128, 64, offset="(1,0,0)", to="(pool1-east)", height=32, depth=32, width=2 ), to_connection( "pool1", "conv2"), to_Pool("pool2", offset="(0,0,0)", to="(conv2-east)", height=28, depth=28, width=1), to_SoftMax("soft1", 10 ,"(3,0,0)", "(pool1-east)", caption="SOFT" ), to_connection("pool2", "soft1"), to_end() ] def main(): namefile = str(sys.argv[0]).split('.')[0] to_generate(arch, namefile + '.tex' ) if __name__ == '__main__': main() bash ../tikzmake.sh my_arch ## Examples Following are some network representations:

FCN-8

FCN-32

Holistically-Nested Edge Detection