# ITKIT **Repository Path**: MGAM/ITKIT ## Basic Information - **Project Name**: ITKIT - **Description**: mgam-ITKIT: Feasible medical Image Operation based on SimpleITK API - **Primary Language**: Python - **License**: MIT - **Default Branch**: main - **Homepage**: https://github.com/MGAMZ/ITKIT - **GVP Project**: No ## Statistics - **Stars**: 3 - **Forks**: 0 - **Created**: 2025-01-03 - **Last Updated**: 2026-01-05 ## Categories & Tags **Categories**: Uncategorized **Tags**: dicom, PyTorch, SimpleITK, medical-image-processing, openMMLab ## README ![LOGO](./docs/ITKIT-LOGO.png) # ITKIT: Feasible Medical Image Operation based on SimpleITK API [![Python >= 3.10](https://img.shields.io/badge/python-%3E%3D3.10-blue)](https://www.python.org/) [![SimpleITK >= 2.5.0](https://img.shields.io/badge/SimpleITK-%3E%3D2.5-yellow)](https://github.com/SimpleITK/SimpleITK) [![License: MIT](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE) ![CI Status](https://github.com/MGAMZ/ITKIT/actions/workflows/test.yml/badge.svg) ITKIT is a comprehensive toolkit for medical image preprocessing and analysis, providing command-line tools, a GUI application, and deep learning framework integrations for CT and MRI image processing. ## ✨ Core Features - **🔧 Preprocessing Tools**: Check, resample, orient, patch, augment, and convert medical images - **🖥️ GUI Application**: User-friendly PyQt6 interface for all operations - **🧠 Neural Networks**: 16+ state-of-the-art segmentation models (SegFormer, MedNeXt, VMamba, etc.) - **🔌 Framework Support**: Integration with OpenMMLab, MONAI, TorchIO, and PyTorch Lightning - **📊 Dataset Conversion**: Scripts for 12+ popular medical imaging datasets - **⚡ High Performance**: Multiprocessing support for faster batch processing ## 🚀 Quick Start ### Installation ```bash pip install itkit # Optional: Install GUI support pip install "itkit[gui]" ``` ### Basic Usage ```bash # Check dataset integrity itk_check check /path/to/dataset --min-spacing 0.5 0.5 0.5 # Resample images to uniform spacing itk_resample dataset /path/to/source /path/to/output --spacing 1.0 1.0 1.0 --mp # Launch GUI application itkit-app ``` ## 📚 Documentation **Full documentation is available at [docs/](docs/index.md)** ### Quick Links - **[Installation Guide](docs/installation.md)** - Detailed installation instructions - **[Quick Start Tutorial](docs/quickstart.md)** - Get started in 5 minutes - **[Dataset Structure](docs/dataset_structure.md)** - Required dataset format - **[Preprocessing Tools](docs/preprocessing.md)** - Complete command reference - **[Framework Integration](docs/framework_integration.md)** - OpenMMLab, MONAI, TorchIO - **[Neural Network Models](docs/models.md)** - Available segmentation models - **[Supported Datasets](docs/datasets.md)** - Dataset conversion scripts - **[FAQ & Troubleshooting](docs/faq.md)** - Common issues and solutions - **[Contributing Guide](docs/contributing.md)** - How to contribute ## 🛠️ Command-Line Tools ITKIT provides several preprocessing commands: | Command | Description | |---------|-------------| | `itk_check` | Validate dataset integrity (spacing, size, pairing) | | `itk_resample` | Resample images to target spacing or size | | `itk_orient` | Orient images to standard directions (LPI, RAS, etc.) | | `itk_patch` | Extract patches for training | | `itk_aug` | Data augmentation with random rotations | | `itk_extract` | Extract specific classes from segmentation maps | | `itk_convert` | Convert between formats (MHA, NIfTI, NRRD) and frameworks (MONAI, TorchIO) | | `itkit-app` | Launch graphical user interface | | `mmrun` | Run OpenMMLab experiments | Use `--help` with any command for detailed usage information. ## 🖼️ GUI Application ![ITKIT GUI](./docs/itkit-gui.png) Install GUI support and launch: ```bash pip install "itkit[gui]" itkit-app # Adjust DPI if needed QT_SCALE_FACTOR=2 itkit-app ``` ## 📦 Optional Features ITKIT provides optional dependency groups: ```bash pip install "itkit[gui]" # GUI application (PyQt6) pip install "itkit[advanced]" # Deep learning frameworks (OpenMMLab) pip install "itkit[dev]" # Development tools (pytest, black, mypy) pip install "itkit[pathology]" # Pathology image processing pip install "itkit[onnx]" # Model deployment (ONNX, TensorRT) ``` ## 📖 Citation If you use ITKIT in your research, please cite: ```bibtex @misc{ITKIT, author = {Yiqin Zhang}, title = {ITKIT: Feasible Medical Image Operation based on SimpleITK API}, year = {2025}, url = {https://github.com/MGAMZ/ITKIT} } ``` ## 🤝 Contributing We welcome contributions! Please see our [Contributing Guide](docs/contributing.md) for: - Development setup - Code style guidelines - Testing requirements - Pull request process ## 📄 License ITKIT is released under the [MIT License](LICENSE). ## 📧 Contact For questions or suggestions, reach out at: [312065559@qq.com](mailto:312065559@qq.com) ## 🌟 Acknowledgments ITKIT builds upon: - [SimpleITK](https://github.com/SimpleITK/SimpleITK) - Medical image processing - [OpenMMLab](https://github.com/open-mmlab) - Deep learning framework - [MONAI](https://monai.io/) - Medical imaging AI - [TorchIO](https://torchio.readthedocs.io/) - Medical image preprocessing --- **⭐ Star us on GitHub if you find ITKIT useful!**