# segmentation **Repository Path**: MoLongCode/segmentation ## Basic Information - **Project Name**: segmentation - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-12-16 - **Last Updated**: 2025-01-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # simple-unet-2d simple unet with NeurIPS'19 topoloss **Commands:** * Make sure to populate `train.json` and `test.json` with appropriate hyprerparameters **Train:** ``` CUDA_VISIBLE_DEVICES=3 python3 main.py --params ./datalists/DRIVE/train.json ``` * Ensure `crop_size` in `train.json` is divisible by 16 **Test/Inference:** ``` CUDA_VISIBLE_DEVICES=4 python3 main.py --params ./datalists/DRIVE/test.json ``` **Compute Evaluation Metrics (Quantitative Results):** ``` python3 compute-eval-metrics.py ``` **Dataset properties:** GT: Foreground should be 255 ; Background should be 0 * First do pretrain (1000-2000 epochs) by setting `"topo_weight": 0` in `train.json` * Then, rainload the best model from pretrain and t using topoloss by setting `topo_weight` to a non-zero value. Change the `output_folder` and `checkpoint_restore` in `train.json` too