# ACS **Repository Path**: Monickar/acs ## Basic Information - **Project Name**: ACS - **Description**: code for paper - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 2 - **Forks**: 0 - **Created**: 2024-06-05 - **Last Updated**: 2025-02-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Addictive-Congestion-Status(ACS) ## Description The provided code is from the paper titled **"Path Congestion Status Identification for Network Performance Tomography Using Deep Spatial-Temporal Learning."** ## Files Tree The structure of this repository is following: ``` ├── improve_nt: │ ├── Topology_zoo.py │ ├── Topology_zoo_Analog.py │ ├── alg_clink_2007.py │ ├── alg_clink_2007_pcs.py │ ├── alg_netscope.py │ ├── alg_netscope_pcs.py │ ├── alg_range_sum.py │ ├── alg_range_sum_pcs.py │ ├── evaluate.py │ └── multi_threads.py ├── lstm-aae │ ├── model.py │ ├── raw.py │ └── val.py └── ns-simulator ├── Chinanet.cc ├── analyze.py └── script3.sh ``` ## Files Summary ### Improve Network Tomography This folder contains the implementation of three different classical network tomography algorithms. Files ending with `pcs` utilize ACS for result correction. - **Topology_zoo.py**: Implements Boolean Network Tomography algorithms. - **Topology_zoo_Analog.py**: Similar to BNT but for Analog Network Tomography. - **alg_clink_2007.py**: Implements the Clink algorithm for network tomography. - **alg_clink_2007_pcs.py**: An adjusted version of `alg_clink_2007.py` using ACS for corrections. - **alg_netscope.py**: Implements the Netscope algorithm for network tomography. - **alg_netscope_pcs.py**: An adjusted version of `alg_netscope.py` using ACS for corrections. - **alg_range_sum.py**: Implements the Range Sum algorithm for network tomography. - **alg_range_sum_pcs.py**: An adjusted version of `alg_range_sum.py` using ACS for corrections. - **evaluate.py**: Contains evaluation functions for assessing the performance of the algorithms. - **multi_threads.py**: Implements multi-threading. ### LSTM-AAE This folder contains the deep learning model for determining ACS. - **model.py**: Contains the architecture and implementation of the LSTM-AAE model. - **raw.py**: Handles raw data processing and preparation for the model. - **val.py**: Contains validation scripts for testing the performance of the model. ### NS3-simulator This folder contains actual network simulation data and related scripts. - **Chinanet.cc**: Source file for simulating the ChinaNet network. - **analyze.py**: Script for analyzing the simulation data. - **script3.sh**: Shell script for running the simulation and analysis.