# Mid-term-visual **Repository Path**: NFUNM026/Mid-term-visual ## Basic Information - **Project Name**: Mid-term-visual - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-11-01 - **Last Updated**: 2024-10-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
import pandas as pd
df=pd.read_csv("dianzizhongduanshu.csv",encoding="gbk")
df
电子=list(zip(list(df.地区),list(df.y_2017.fillna(0))))
print(电子)
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType
def geo_电子() -> Geo:
c = (
Geo()
.add_schema(maptype="china")
.add("电子阅览室终端数(台)",电子)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
visualmap_opts=opts.VisualMapOpts(min_=976.00, max_=10928.00),
title_opts=opts.TitleOpts(title="2017年中国各省的公共图书馆电子阅览室终端"),
)
)
return c
地理图 = geo_电子()
地理图.render_notebook()
import pandas as pd
df=pd.read_csv("tushuguanshoucangliang.csv",encoding="gbk")
df
藏书=list(zip(list(df.地区),list(df.y_2017.fillna(0))))
print(藏书)
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.globals import ChartType, SymbolType
def map_藏书() -> Map:
c = (
Map()
.add("图书馆藏书量(万册)", 藏书, "china")
.set_global_opts(
title_opts=opts.TitleOpts(title="2017年中国各省公共图书馆总藏量"),
visualmap_opts=opts.VisualMapOpts(max_=8708.3),
)
)
return c
地理图 = map_藏书()
地理图.render_notebook()
import pandas as pd
df=pd.read_csv("tushuguanshuliang.csv",encoding="gbk")
df
书量=list(zip(list(df.地区),list(df.y_2017.fillna(0))))
print(书量)
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType
def geo_书量() -> Geo:
c = (
Geo()
.add_schema(maptype="china")
.add("机构数(个)",书量)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
visualmap_opts=opts.VisualMapOpts(min_=0, max_=204),
title_opts=opts.TitleOpts(title="2017年中国各省公共图书馆业机构数"),
)
)
return c
地理图 = geo_书量()
地理图.render_notebook()
from pyecharts.charts import Scatter
from pyecharts import options as opts
from pyecharts.charts import Scatter
def scatter_base()-> Scatter:
c=(
Scatter()
.add_xaxis(["广东", "江苏", "浙江", "上海","四川"])
.add_yaxis("电子阅读",[10928, 6769, 7551, 3029, 7966])
.add_yaxis("藏书量",[8708.30, 8597.62, 7812.91, 7773.08, 3792.88])
.add_yaxis("机构",[143, 115, 191, 24, 204])
.set_global_opts(title_opts=opts.TitleOpts(title="电子阅览终端-藏书量-图书馆机构最多比较"))
)
return c
scatter_base().render_notebook()
from pyecharts.charts import Line
line = (
Line()
.add_xaxis(["西藏", "青海", "宁夏", "海南"])
.add_yaxis("电子阅读", [1010, 1379, 1784, 976])
.add_yaxis("藏书量", [195.14, 458.53, 721.28, 489.85])
.add_yaxis("机构数", [107, 49, 26, 23])
.set_global_opts(title_opts=opts.TitleOpts(title="电子阅览终端-藏书量-图书馆机构最少比较"))
)
line.render_notebook()