# Interactive Visual CO2 **Repository Path**: NFUNM082/Interactive-Visual-CO2 ## Basic Information - **Project Name**: Interactive Visual CO2 - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-09-28 - **Last Updated**: 2024-10-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README 欧美碳排对比+171013082+吴扬扬
In [3]:
import pyecharts
In [4]:
import pandas as pd
import csv, os
data = pd.read_csv('C:/Users/admin/Desktop/bar/oecd_carbon_emissions_data.csv',index_col='Country')    
In [5]:
data
Out[5]:
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 ... 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Country
United States 6371000.54 6315615.19 6424934.36 6532069.60 6624835.79 6710067.3 6907699.05 6968461.97 7032526.01 7071461.46 ... 7160600.81 6709369.15 6938591.68 6787419.03 6545969.33 6710218.18 6759995.63 6623775.48 6492267.43 6456718.19
European Union (28 countries) 5649529.34 5555045.95 5379830.54 5281540.39 5255297.27 5308544.0 5418671.89 5326316.82 5281519.48 5172643.92 ... 5046999.43 4681900.46 4783627.79 4626382.21 4563064.71 4468920.46 4297635.77 4327313.20 4303391.87 4323163.15

2 rows × 28 columns

In [6]:
x轴 = [int(x)for x in data.columns.values[-4:]]
x轴
Out[6]:
[2014, 2015, 2016, 2017]
In [7]:
美国 = list(data.loc['United States'].values)[-4:]
美国
Out[7]:
[6759995.63, 6623775.48, 6492267.43, 6456718.19]
In [8]:
欧洲 = list(data.loc['European Union (28 countries)'].values)[-4:]
欧洲
Out[8]:
[4297635.77, 4327313.2, 4303391.87, 4323163.15]
In [9]:
from pyecharts import options as opts
from pyecharts.charts import Bar
In [10]:
def bar_base() -> Bar:
    c = (
        Bar()
        .add_xaxis(x轴)
        .add_yaxis("美", 美国)
        .add_yaxis("欧", 欧洲)
        .set_global_opts(title_opts=opts.TitleOpts(title="欧美碳排对比", subtitle="欧美对比"))
    )
    return c
In [11]:
b = bar_base()
b.render_notebook()
Out[11]:
In [ ]:
 
In [ ]: