# api
**Repository Path**: NiShuiDuLiu/api
## Basic Information
- **Project Name**: api
- **Description**: An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2020-06-15
- **Last Updated**: 2026-02-21
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
[](https://travis-ci.com/mseg-dataset/mseg-api)
This is the code for the paper:
**MSeg: A Composite Dataset for Multi-domain Semantic Segmentation** (CVPR 2020, Official Repo) [[PDF]](http://vladlen.info/papers/MSeg.pdf)
[John Lambert*](https://johnwlambert.github.io/),
[Zhuang Liu*](https://liuzhuang13.github.io/),
[Ozan Sener](http://ozansener.net/),
[James Hays](https://www.cc.gatech.edu/~hays/),
[Vladlen Koltun](http://vladlen.info/)
Presented at [CVPR 2020](http://cvpr2018.thecvf.com/). Link to [MSeg Video (3min.)](https://youtu.be/PzBK6K5gyyo)
This repo is the first of 4 repos that introduce our work. It provides utilities to download the MSeg dataset (which is nontrivial), and prepare the data on disk in a unified taxonomy.
Three additional repos are also provided:
- [`mseg-semantic`](https://github.com/mseg-dataset/mseg-semantic): provides HRNet-W48 Training (sufficient to train a winning entry on the [WildDash](https://wilddash.cc/benchmark/summary_tbl?hc=semantic_rob) benchmark)
- `mseg-panoptic`: provides Panoptic-FPN and Mask-RCNN training, based on Detectron2 (will be introduced in June 2020)
- `mseg-mturk`: provides utilities to perform large-scale Mechanical Turk re-labeling (will be introduced in June 2020)
### Install the MSeg module:
* `mseg` can be installed as a python package using
pip install -e /path_to_root_directory_of_the_repo/
Make sure that you can run `import mseg` in python, and you are good to go!
### Download MSeg
* Navigate to [download_scripts/README.md](https://github.com/mseg-dataset/mseg-api-staging/blob/master/download_scripts/README.md) for instructions.
### The MSeg Taxonomy
We provide comprehensive class definitions and examples [here](https://drive.google.com/file/d/1zBGSokcaKjEZU95J-hRnyim6y8zDVafs/view?usp=sharing). We provide [here](https://github.com/mseg-dataset/mseg-api-staging/blob/master/mseg/class_remapping_files/MSeg_master.tsv) a master spreadsheet mapping all training datasets to the MSeg Taxonomy, and the MSeg Taxonomy to test datasets. Please consult [taxonomy_FAQ.md](https://github.com/mseg-dataset/mseg-api-staging/blob/master/download_scripts/taxonomy_FAQ.md) to learn what each of the dataset taxonomy names means.
## Citing MSeg
If you find this code useful for your research, please cite:
```
@InProceedings{MSeg_2020_CVPR,
author = {Lambert, John and Zhuang, Liu and Sener, Ozan and Hays, James and Koltun, Vladlen},
title = {{MSeg}: A Composite Dataset for Multi-domain Semantic Segmentation},
booktitle = {Computer Vision and Pattern Recognition (CVPR)},
year = {2020}
}
```
## Repo Structure
- `download_scripts`: code and instructions to download the entire MSeg dataset
- `mseg`: Python module, including
- `dataset_apis`
- `dataset_lists`: ordered classnames for each dataset, and corresponding relative rgb/label file paths
- `label_preparation`: code for remapping to `semseg` format, and for relabeling masks in place
- `relabeled_data`: MSeg data, annotated by Mechanical Turk workers, and verified by co-authors
- `taxonomy`: on-the-fly mapping to a unified taxonomy during training, and linear mapping to evaluation taxonomies
- `utils`: library functions for mask and image manipulation, filesystem, tsv/csv reading, and multiprocessing
- `tests`: unit tests on all code
## Data License

This work is licensed under a Creative Commons Attribution 4.0 International License.