# AutoAssert1 **Repository Path**: OpenBPU/auto-assert1 ## Basic Information - **Project Name**: AutoAssert1 - **Description**: A LoRA Fine-Tuned LLM Model for Efficient Automated Assertion Generation - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-08-05 - **Last Updated**: 2025-08-05 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Verilog Assertion Training & Inference This project is designed for training and inference using Verilog code assertion pairs. It includes scripts for fine-tuning models and a local server for deployment. --- ## 📦 Installation Install the required packages using the following commands: ```bash pip --default-timeout=1000 install "unsloth[121]" -i https://pypi.tuna.tsinghua.edu.cn/simple pip install trl transformers accelerate peft bitsandbytes pip install tf-keras pip install pandas openpyxl pip install nltk rouge pip install scikit-learn pip install wandb pip install uvicorn pip install fastapi Dataset The dataset (vert.xlsx) contains 20,000 Verilog code assertion pairs. --- ## 🚀 Usage ### Training and Inference Run the following script to start training and inference: ```bash python sft.py ``` ### Local Server Start the local server with the following command: ```bash uvicorn app:app --reload --host 0.0.0.0 --port 8000 ``` --- ## 🖥️ Frontend The frontend code is located in the `template` directory (`index.html`). --- ## 📁 Project Structure - `vert.xlsx`: Dataset file - `sft.py`: Script for training and inference - `app.py`: Script to start the local server - `template/`: Directory containing frontend code (`index.html`) --- ## ⚠️ Notes - Ensure all dependencies are installed before running the scripts.