# CVPR2021-Papers-with-Code
**Repository Path**: PythonIoT/CVPR2021-Papers-with-Code
## Basic Information
- **Project Name**: CVPR2021-Papers-with-Code
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2021-09-21
- **Last Updated**: 2021-09-21
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# CVPR 2021 论文和开源项目合集(Papers with Code)
[CVPR 2021](http://cvpr2021.thecvf.com/) 论文和开源项目合集(papers with code)!
CVPR 2021 收录列表:http://cvpr2021.thecvf.com/sites/default/files/2021-03/accepted_paper_ids.txt
> 注1:欢迎各位大佬提交issue,分享CVPR 2021论文和开源项目!
>
> 注2:关于往年CV顶会论文以及其他优质CV论文和大盘点,详见: https://github.com/amusi/daily-paper-computer-vision
如果你想了解最新最优质的的CV论文、开源项目和学习资料,欢迎扫码加入【CVer学术交流群】!互相学习,一起进步~

## 【CVPR 2021 论文开源目录】
- [Best Paper](#Best-Paper)
- [Backbone](#Backbone)
- [NAS](#NAS)
- [GAN](#GAN)
- [VAE](#VAE)
- [Visual Transformer](#Visual-Transformer)
- [Regularization](#Regularization)
- [SLAM](#SLAM)
- [长尾分布(Long-Tailed)](#Long-Tailed)
- [数据增广(Data Augmentation)](#DA)
- [无监督/自监督(Self-Supervised)](#Un/Self-Supervised)
- [半监督(Semi-Supervised)](#Semi-Supervised)
- [胶囊网络(Capsule Network)](#Capsule-Network)
- [图像分类(Image Classification](#Image-Classification)
- [2D目标检测(Object Detection)](#Object-Detection)
- [单/多目标跟踪(Object Tracking)](#Object-Tracking)
- [语义分割(Semantic Segmentation)](#Semantic-Segmentation)
- [实例分割(Instance Segmentation)](#Instance-Segmentation)
- [全景分割(Panoptic Segmentation)](#Panoptic-Segmentation)
- [医学图像分割(Medical Image Segmentation)](#Medical-Image-Segmentation)
- [视频目标分割(Video-Object-Segmentation)](#VOS)
- [交互式视频目标分割(Interactive-Video-Object-Segmentation)](#IVOS)
- [显著性检测(Saliency Detection)](#Saliency-Detection)
- [伪装物体检测(Camouflaged Object Detection)](#Camouflaged-Object-Detection)
- [协同显著性检测(Co-Salient Object Detection)](#CoSOD)
- [图像抠图(Image Matting)](#Matting)
- [行人重识别(Person Re-identification)](#Re-ID)
- [行人搜索(Person Search)](#Person-Search)
- [视频理解/行为识别(Video Understanding)](#Video-Understanding)
- [人脸识别(Face Recognition)](#Face-Recognition)
- [人脸检测(Face Detection)](#Face-Detection)
- [人脸活体检测(Face Anti-Spoofing)](#Face-Anti-Spoofing)
- [Deepfake检测(Deepfake Detection)](#Deepfake-Detection)
- [人脸年龄估计(Age-Estimation)](#Age-Estimation)
- [人脸表情识别(Facial-Expression-Recognition)](#FER)
- [Deepfakes](#Deepfakes)
- [人体解析(Human Parsing)](#Human-Parsing)
- [2D/3D人体姿态估计(2D/3D Human Pose Estimation)](#Human-Pose-Estimation)
- [动物姿态估计(Animal Pose Estimation)](#Animal-Pose-Estimation)
- [手部姿态估计(Hand Pose Estimation)](#Hand-Pose-Estimation)
- [Human Volumetric Capture](#Human-Volumetric-Capture)
- [场景文本识别(Scene Text Recognition)](#Scene-Text-Recognition)
- [图像压缩(Image Compression)](#Image-Compression)
- [模型压缩/剪枝/量化](#Model-Compression)
- [知识蒸馏(Knowledge Distillation)](#KD)
- [超分辨率(Super-Resolution)](#Super-Resolution)
- [去雾(Dehazing)](#Dehazing)
- [图像恢复(Image Restoration)](#Image-Restoration)
- [图像补全(Image Inpainting)](#Image-Inpainting)
- [图像编辑(Image Editing)](#Image-Editing)
- [图像描述(Image Captioning)](#Image-Captioning)
- [字体生成(Font Generation)](#Font-Generation)
- [图像匹配(Image Matching)](#Image-Matching)
- [图像融合(Image Blending)](#Image-Blending)
- [反光去除(Reflection Removal)](#Reflection-Removal)
- [3D点云分类(3D Point Clouds Classification)](#3D-C)
- [3D目标检测(3D Object Detection)](#3D-Object-Detection)
- [3D语义分割(3D Semantic Segmentation)](#3D-Semantic-Segmentation)
- [3D全景分割(3D Panoptic Segmentation)](#3D-Panoptic-Segmentation)
- [3D目标跟踪(3D Object Tracking)](#3D-Object-Tracking)
- [3D点云配准(3D Point Cloud Registration)](#3D-PointCloud-Registration)
- [3D点云补全(3D-Point-Cloud-Completion)](#3D-Point-Cloud-Completion)
- [3D重建(3D Reconstruction)](#3D-Reconstruction)
- [6D位姿估计(6D Pose Estimation)](#6D-Pose-Estimation)
- [相机姿态估计(Camera Pose Estimation)](#Camera-Pose-Estimation)
- [深度估计(Depth Estimation)](#Depth-Estimation)
- [立体匹配(Stereo Matching)](#Stereo-Matching)
- [光流估计(Flow Estimation)](#Flow-Estimation)
- [车道线检测(Lane Detection)](#Lane-Detection)
- [轨迹预测(Trajectory Prediction)](#Trajectory-Prediction)
- [人群计数(Crowd Counting)](#Crowd-Counting)
- [对抗样本(Adversarial-Examples)](#AE)
- [图像检索(Image Retrieval)](#Image-Retrieval)
- [视频检索(Video Retrieval)](#Video-Retrieval)
- [跨模态检索(Cross-modal Retrieval)](#Cross-modal-Retrieval)
- [Zero-Shot Learning](#Zero-Shot-Learning)
- [联邦学习(Federated Learning)](#Federated-Learning)
- [视频插帧(Video Frame Interpolation)](#Video-Frame-Interpolation)
- [视觉推理(Visual Reasoning)](#Visual-Reasoning)
- [图像合成(Image Synthesis)](#Image-Synthesis)
- [视图合成(Visual Synthesis)](#Visual-Synthesis)
- [风格迁移(Style Transfer)](#Style-Transfer)
- [布局生成(Layout Generation)](#Layout-Generation)
- [Domain Generalization](#Domain-Generalization)
- [Domain Adaptation](#Domain-Adaptation)
- [Open-Set](#Open-Set)
- [Adversarial Attack](#Adversarial-Attack)
- ["人-物"交互(HOI)检测](#HOI)
- [阴影去除(Shadow Removal)](#Shadow-Removal)
- [虚拟试衣(Virtual Try-On)](#Virtual-Try-On)
- [标签噪声(Label Noise)](#Label-Noise)
- [视频稳像(Video Stabilization)](#Video-Stabilization)
- [数据集(Datasets)](#Datasets)
- [其他(Others)](#Others)
- [待添加(TODO)](#TO-DO)
- [不确定中没中(Not Sure)](#Not-Sure)
# Best Paper
**GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields**
- Homepage: https://m-niemeyer.github.io/project-pages/giraffe/index.html
- Paper(Oral): https://arxiv.org/abs/2011.12100
- Code: https://github.com/autonomousvision/giraffe
- Demo: http://www.youtube.com/watch?v=fIaDXC-qRSg&vq=hd1080&autoplay=1
# Backbone
**HR-NAS: Searching Efficient High-Resolution Neural Architectures with Lightweight Transformers**
- Paper(Oral): https://arxiv.org/abs/2106.06560
- Code: https://github.com/dingmyu/HR-NAS
**BCNet: Searching for Network Width with Bilaterally Coupled Network**
- Paper: https://arxiv.org/abs/2105.10533
- Code: None
**Decoupled Dynamic Filter Networks**
- Homepage: https://thefoxofsky.github.io/project_pages/ddf
- Paper: https://arxiv.org/abs/2104.14107
- Code: https://github.com/thefoxofsky/DDF
**Lite-HRNet: A Lightweight High-Resolution Network**
- Paper: https://arxiv.org/abs/2104.06403
- https://github.com/HRNet/Lite-HRNet
**CondenseNet V2: Sparse Feature Reactivation for Deep Networks**
- Paper: https://arxiv.org/abs/2104.04382
- Code: https://github.com/jianghaojun/CondenseNetV2
**Diverse Branch Block: Building a Convolution as an Inception-like Unit**
- Paper: https://arxiv.org/abs/2103.13425
- Code: https://github.com/DingXiaoH/DiverseBranchBlock
**Scaling Local Self-Attention For Parameter Efficient Visual Backbones**
- Paper(Oral): https://arxiv.org/abs/2103.12731
- Code: None
**ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network**
- Paper: https://arxiv.org/abs/2007.00992
- Code: https://github.com/clovaai/rexnet
**Involution: Inverting the Inherence of Convolution for Visual Recognition**
- Paper: https://github.com/d-li14/involution
- Code: https://arxiv.org/abs/2103.06255
**Coordinate Attention for Efficient Mobile Network Design**
- Paper: https://arxiv.org/abs/2103.02907
- Code: https://github.com/Andrew-Qibin/CoordAttention
**Inception Convolution with Efficient Dilation Search**
- Paper: https://arxiv.org/abs/2012.13587
- Code: https://github.com/yifan123/IC-Conv
**RepVGG: Making VGG-style ConvNets Great Again**
- Paper: https://arxiv.org/abs/2101.03697
- Code: https://github.com/DingXiaoH/RepVGG
# NAS
**HR-NAS: Searching Efficient High-Resolution Neural Architectures with Lightweight Transformers**
- Paper(Oral): https://arxiv.org/abs/2106.06560
- Code: https://github.com/dingmyu/HR-NAS
**BCNet: Searching for Network Width with Bilaterally Coupled Network**
- Paper: https://arxiv.org/abs/2105.10533
- Code: None
**ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search**
- Paper: ttps://arxiv.org/abs/2105.10154
- Code: None
**Combined Depth Space based Architecture Search For Person Re-identification**
- Paper: https://arxiv.org/abs/2104.04163
- Code: None
**DiNTS: Differentiable Neural Network Topology Search for 3D Medical Image Segmentation**
- Paper(Oral): https://arxiv.org/abs/2103.15954
- Code: None
**HR-NAS: Searching Efficient High-Resolution Neural Architectures with Transformers**
- Paper(Oral): None
- Code: https://github.com/dingmyu/HR-NAS
**Neural Architecture Search with Random Labels**
- Paper: https://arxiv.org/abs/2101.11834
- Code: None
**Towards Improving the Consistency, Efficiency, and Flexibility of Differentiable Neural Architecture Search**
- Paper: https://arxiv.org/abs/2101.11342
- Code: None
**Joint-DetNAS: Upgrade Your Detector with NAS, Pruning and Dynamic Distillation**
- Paper: https://arxiv.org/abs/2105.12971
- Code: None
**Prioritized Architecture Sampling with Monto-Carlo Tree Search**
- Paper: https://arxiv.org/abs/2103.11922
- Code: https://github.com/xiusu/NAS-Bench-Macro
**Contrastive Neural Architecture Search with Neural Architecture Comparators**
- Paper: https://arxiv.org/abs/2103.05471
- Code: https://github.com/chenyaofo/CTNAS
**AttentiveNAS: Improving Neural Architecture Search via Attentive**
- Paper: https://arxiv.org/abs/2011.09011
- Code: None
**ReNAS: Relativistic Evaluation of Neural Architecture Search**
- Paper: https://arxiv.org/abs/1910.01523
- Code: None
**HourNAS: Extremely Fast Neural Architecture**
- Paper: https://arxiv.org/abs/2005.14446
- Code: None
**Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator**
- Paper: https://arxiv.org/abs/2103.07289
- Code: https://github.com/eric8607242/SGNAS
**OPANAS: One-Shot Path Aggregation Network Architecture Search for Object Detection**
- Paper: https://arxiv.org/abs/2103.04507
- Code: https://github.com/VDIGPKU/OPANAS
**Inception Convolution with Efficient Dilation Search**
- Paper: https://arxiv.org/abs/2012.13587
- Code: None
# GAN
**High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network**
- Paper: https://arxiv.org/abs/2105.09188
- Code: https://github.com/csjliang/LPTN
- Dataset: https://github.com/csjliang/LPTN
**DG-Font: Deformable Generative Networks for Unsupervised Font Generation**
- Paper: https://arxiv.org/abs/2104.03064
- Code: https://github.com/ecnuycxie/DG-Font
**PD-GAN: Probabilistic Diverse GAN for Image Inpainting**
- Paper: https://arxiv.org/abs/2105.02201
- Code: https://github.com/KumapowerLIU/PD-GAN
**StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing**
- Paper: https://arxiv.org/abs/2104.14754
- Code: https://github.com/naver-ai/StyleMapGAN
- Demo Video: https://youtu.be/qCapNyRA_Ng
**Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality Artistic Style Transfer**
- Paper: https://arxiv.org/abs/2104.05376
- Code: https://github.com/PaddlePaddle/PaddleGAN/
**Regularizing Generative Adversarial Networks under Limited Data**
- Homepage: https://hytseng0509.github.io/lecam-gan/
- Paper: https://faculty.ucmerced.edu/mhyang/papers/cvpr2021_gan_limited_data.pdf
- Code: https://github.com/google/lecam-gan
**Towards Real-World Blind Face Restoration with Generative Facial Prior**
- Paper: https://arxiv.org/abs/2101.04061
- Code: None
**TediGAN: Text-Guided Diverse Image Generation and Manipulation**
- Homepage: https://xiaweihao.com/projects/tedigan/
- Paper: https://arxiv.org/abs/2012.03308
- Code: https://github.com/weihaox/TediGAN
**Generative Hierarchical Features from Synthesizing Image**
- Homepage: https://genforce.github.io/ghfeat/
- Paper(Oral): https://arxiv.org/abs/2007.10379
- Code: https://github.com/genforce/ghfeat
**Teachers Do More Than Teach: Compressing Image-to-Image Models**
- Paper: https://arxiv.org/abs/2103.03467
- Code: https://github.com/snap-research/CAT
**HistoGAN: Controlling Colors of GAN-Generated and Real Images via Color Histograms**
- Paper: https://arxiv.org/abs/2011.11731
- Code: https://github.com/mahmoudnafifi/HistoGAN
**pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis**
- Homepage: https://marcoamonteiro.github.io/pi-GAN-website/
- Paper(Oral): https://arxiv.org/abs/2012.00926
- Code: None
**DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network**
- Paper: https://arxiv.org/abs/2103.07893
- Code: None
**Diverse Semantic Image Synthesis via Probability Distribution Modeling**
- Paper: https://arxiv.org/abs/2103.06878
- Code: https://github.com/tzt101/INADE.git
**LOHO: Latent Optimization of Hairstyles via Orthogonalization**
- Paper: https://arxiv.org/abs/2103.03891
- Code: None
**PISE: Person Image Synthesis and Editing with Decoupled GAN**
- Paper: https://arxiv.org/abs/2103.04023
- Code: https://github.com/Zhangjinso/PISE
**DeFLOCNet: Deep Image Editing via Flexible Low-level Controls**
- Paper: http://raywzy.com/
- Code: http://raywzy.com/
**PD-GAN: Probabilistic Diverse GAN for Image Inpainting**
- Paper: http://raywzy.com/
- Code: http://raywzy.com/
**Efficient Conditional GAN Transfer with Knowledge Propagation across Classes**
- Paper: https://www.researchgate.net/publication/349309756_Efficient_Conditional_GAN_Transfer_with_Knowledge_Propagation_across_Classes
- Code: http://github.com/mshahbazi72/cGANTransfer
**Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing**
- Paper: None
- Code: None
**Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs**
- Paper: https://arxiv.org/abs/2011.14107
- Code: None
**Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation**
- Homepage: https://eladrich.github.io/pixel2style2pixel/
- Paper: https://arxiv.org/abs/2008.00951
- Code: https://github.com/eladrich/pixel2style2pixel
**A 3D GAN for Improved Large-pose Facial Recognition**
- Paper: https://arxiv.org/abs/2012.10545
- Code: None
**HumanGAN: A Generative Model of Humans Images**
- Paper: https://arxiv.org/abs/2103.06902
- Code: None
**ID-Unet: Iterative Soft and Hard Deformation for View Synthesis**
- Paper: https://arxiv.org/abs/2103.02264
- Code: https://github.com/MingyuY/Iterative-view-synthesis
**CoMoGAN: continuous model-guided image-to-image translation**
- Paper(Oral): https://arxiv.org/abs/2103.06879
- Code: https://github.com/cv-rits/CoMoGAN
**Training Generative Adversarial Networks in One Stage**
- Paper: https://arxiv.org/abs/2103.00430
- Code: None
**Closed-Form Factorization of Latent Semantics in GANs**
- Homepage: https://genforce.github.io/sefa/
- Paper(Oral): https://arxiv.org/abs/2007.06600
- Code: https://github.com/genforce/sefa
**Anycost GANs for Interactive Image Synthesis and Editing**
- Paper: https://arxiv.org/abs/2103.03243
- Code: https://github.com/mit-han-lab/anycost-gan
**Image-to-image Translation via Hierarchical Style Disentanglement**
- Paper: https://arxiv.org/abs/2103.01456
- Code: https://github.com/imlixinyang/HiSD
# VAE
**Soft-IntroVAE: Analyzing and Improving Introspective Variational Autoencoders**
- Homepage: https://taldatech.github.io/soft-intro-vae-web/
- Paper: https://arxiv.org/abs/2012.13253
- Code: https://github.com/taldatech/soft-intro-vae-pytorch
# Visual Transformer
**1. End-to-End Human Pose and Mesh Reconstruction with Transformers**
- Paper: https://arxiv.org/abs/2012.09760
- Code: https://github.com/microsoft/MeshTransformer
**2. Temporal-Relational CrossTransformers for Few-Shot Action Recognition**
- Paper: https://arxiv.org/abs/2101.06184
- Code: https://github.com/tobyperrett/trx
**3. Kaleido-BERT:Vision-Language Pre-training on Fashion Domain**
- Paper: https://arxiv.org/abs/2103.16110
- Code: https://github.com/mczhuge/Kaleido-BERT
**4. HOTR: End-to-End Human-Object Interaction Detection with Transformers**
- Paper: https://arxiv.org/abs/2104.13682
- Code: https://github.com/kakaobrain/HOTR
**5. Multi-Modal Fusion Transformer for End-to-End Autonomous Driving**
- Paper: https://arxiv.org/abs/2104.09224
- Code: https://github.com/autonomousvision/transfuser
**6. Pose Recognition with Cascade Transformers**
- Paper: https://arxiv.org/abs/2104.06976
- Code: https://github.com/mlpc-ucsd/PRTR
**7. Variational Transformer Networks for Layout Generation**
- Paper: https://arxiv.org/abs/2104.02416
- Code: None
**8. LoFTR: Detector-Free Local Feature Matching with Transformers**
- Homepage: https://zju3dv.github.io/loftr/
- Paper: https://arxiv.org/abs/2104.00680
- Code: https://github.com/zju3dv/LoFTR
**9. Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers**
- Paper: https://arxiv.org/abs/2012.15840
- Code: https://github.com/fudan-zvg/SETR
**10. Thinking Fast and Slow: Efficient Text-to-Visual Retrieval with Transformers**
- Paper: https://arxiv.org/abs/2103.16553
- Code: None
**11. Transformer Tracking**
- Paper: https://arxiv.org/abs/2103.15436
- Code: https://github.com/chenxin-dlut/TransT
**12. HR-NAS: Searching Efficient High-Resolution Neural Architectures with Transformers**
- Paper(Oral): https://arxiv.org/abs/2106.06560
- Code: https://github.com/dingmyu/HR-NAS
**13. MIST: Multiple Instance Spatial Transformer**
- Paper: https://arxiv.org/abs/1811.10725
- Code: None
**14. Multimodal Motion Prediction with Stacked Transformers**
- Paper: https://arxiv.org/abs/2103.11624
- Code: https://decisionforce.github.io/mmTransformer
**15. Revamping cross-modal recipe retrieval with hierarchical Transformers and self-supervised learning**
- Paper: https://www.amazon.science/publications/revamping-cross-modal-recipe-retrieval-with-hierarchical-transformers-and-self-supervised-learning
- Code: https://github.com/amzn/image-to-recipe-transformers
**16. Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking**
- Paper(Oral): https://arxiv.org/abs/2103.11681
- Code: https://github.com/594422814/TransformerTrack
**17. Pre-Trained Image Processing Transformer**
- Paper: https://arxiv.org/abs/2012.00364
- Code: None
**18. End-to-End Video Instance Segmentation with Transformers**
- Paper(Oral): https://arxiv.org/abs/2011.14503
- Code: https://github.com/Epiphqny/VisTR
**19. UP-DETR: Unsupervised Pre-training for Object Detection with Transformers**
- Paper(Oral): https://arxiv.org/abs/2011.09094
- Code: https://github.com/dddzg/up-detr
**20. End-to-End Human Object Interaction Detection with HOI Transformer**
- Paper: https://arxiv.org/abs/2103.04503
- Code: https://github.com/bbepoch/HoiTransformer
**21. Transformer Interpretability Beyond Attention Visualization**
- Paper: https://arxiv.org/abs/2012.09838
- Code: https://github.com/hila-chefer/Transformer-Explainability
**22. Diverse Part Discovery: Occluded Person Re-Identification With Part-Aware Transformer**
- Paper: None
- Code: None
**23. LayoutTransformer: Scene Layout Generation With Conceptual and Spatial Diversity**
- Paper: None
- Code: None
**24. Line Segment Detection Using Transformers without Edges**
- Paper(Oral): https://arxiv.org/abs/2101.01909
- Code: None
**25. MaX-DeepLab: End-to-End Panoptic Segmentation With Mask Transformers**
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_MaX-DeepLab_End-to-End_Panoptic_Segmentation_With_Mask_Transformers_CVPR_2021_paper.html
- Code: None
**26. SSTVOS: Sparse Spatiotemporal Transformers for Video Object Segmentation**
- Paper(Oral): https://arxiv.org/abs/2101.08833
- Code: https://github.com/dukebw/SSTVOS
**27. Facial Action Unit Detection With Transformers**
- Paper: None
- Code: None
**28. Clusformer: A Transformer Based Clustering Approach to Unsupervised Large-Scale Face and Visual Landmark Recognition**
- Paper: None
- Code: None
**29. Lesion-Aware Transformers for Diabetic Retinopathy Grading**
- Paper: None
- Code: None
**30. Topological Planning With Transformers for Vision-and-Language Navigation**
- Paper: https://arxiv.org/abs/2012.05292
- Code: None
**31. Adaptive Image Transformer for One-Shot Object Detection**
- Paper: None
- Code: None
**32. Multi-Stage Aggregated Transformer Network for Temporal Language Localization in Videos**
- Paper: None
- Code: None
**33. Taming Transformers for High-Resolution Image Synthesis**
- Homepage: https://compvis.github.io/taming-transformers/
- Paper(Oral): https://arxiv.org/abs/2012.09841
- Code: https://github.com/CompVis/taming-transformers
**34. Self-Supervised Video Hashing via Bidirectional Transformers**
- Paper: None
- Code: None
**35. Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos**
- Paper(Oral): https://hehefan.github.io/pdfs/p4transformer.pdf
- Code: None
**36. Gaussian Context Transformer**
- Paper: None
- Code: None
**37. General Multi-Label Image Classification With Transformers**
- Paper: https://arxiv.org/abs/2011.14027
- Code: None
**38. Bottleneck Transformers for Visual Recognition**
- Paper: https://arxiv.org/abs/2101.11605
- Code: None
**39. VLN BERT: A Recurrent Vision-and-Language BERT for Navigation**
- Paper(Oral): https://arxiv.org/abs/2011.13922
- Code: https://github.com/YicongHong/Recurrent-VLN-BERT
**40. Less Is More: ClipBERT for Video-and-Language Learning via Sparse Sampling**
- Paper(Oral): https://arxiv.org/abs/2102.06183
- Code: https://github.com/jayleicn/ClipBERT
**41. Self-attention based Text Knowledge Mining for Text Detection**
- Paper: None
- Code: https://github.com/CVI-SZU/STKM
**42. SSAN: Separable Self-Attention Network for Video Representation Learning**
- Paper: None
- Code: None
**43. Scaling Local Self-Attention For Parameter Efficient Visual Backbones**
- Paper(Oral): https://arxiv.org/abs/2103.12731
- Code: None
# Regularization
**Regularizing Neural Networks via Adversarial Model Perturbation**
- Paper: https://arxiv.org/abs/2010.04925
- Code: https://github.com/hiyouga/AMP-Regularizer
# SLAM
**Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation**
- Paper: https://arxiv.org/abs/2105.07593
- Code: None
**Generalizing to the Open World: Deep Visual Odometry with Online Adaptation**
- Paper: https://arxiv.org/abs/2103.15279
- Code: https://arxiv.org/abs/2103.15279
# 长尾分布(Long-Tailed)
**Adversarial Robustness under Long-Tailed Distribution**
- Paper(Oral): https://arxiv.org/abs/2104.02703
- Code: https://github.com/wutong16/Adversarial_Long-Tail
**Distribution Alignment: A Unified Framework for Long-tail Visual Recognition**
- Paper: https://arxiv.org/abs/2103.16370
- Code: https://github.com/Megvii-BaseDetection/DisAlign
**Adaptive Class Suppression Loss for Long-Tail Object Detection**
- Paper: https://arxiv.org/abs/2104.00885
- Code: https://github.com/CASIA-IVA-Lab/ACSL
**Contrastive Learning based Hybrid Networks for Long-Tailed Image Classification**
- Paper: https://arxiv.org/abs/2103.14267
- Code: None
# 数据增广(Data Augmentation)
**Scale-aware Automatic Augmentation for Object Detection**
- Paper: https://arxiv.org/abs/2103.17220
- Code: https://github.com/Jia-Research-Lab/SA-AutoAug
# 无监督/自监督(Un/Self-Supervised)
**Domain-Specific Suppression for Adaptive Object Detection**
- Paper: https://arxiv.org/abs/2105.03570
- Code: None
**A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning**
- Paper: https://arxiv.org/abs/2104.14558
- Code: https://github.com/facebookresearch/SlowFast
**Unsupervised Multi-Source Domain Adaptation for Person Re-Identification**
- Paper: https://arxiv.org/abs/2104.12961
- Code: None
**Self-supervised Video Representation Learning by Context and Motion Decoupling**
- Paper: https://arxiv.org/abs/2104.00862
- Code: None
**Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning**
- Homepage: https://fingerrec.github.io/index_files/jinpeng/papers/CVPR2021/project_website.html
- Paper: https://arxiv.org/abs/2009.05769
- Code: https://github.com/FingerRec/BE
**Spatially Consistent Representation Learning**
- Paper: https://arxiv.org/abs/2103.06122
- Code: None
**VideoMoCo: Contrastive Video Representation Learning with Temporally Adversarial Examples**
- Paper: https://arxiv.org/abs/2103.05905
- Code: https://github.com/tinapan-pt/VideoMoCo
**Exploring Simple Siamese Representation Learning**
- Paper(Oral): https://arxiv.org/abs/2011.10566
- Code: None
**Dense Contrastive Learning for Self-Supervised Visual Pre-Training**
- Paper(Oral): https://arxiv.org/abs/2011.09157
- Code: https://github.com/WXinlong/DenseCL
# 半监督学习(Semi-Supervised )
**Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework**
- 作者单位: 阿里巴巴
- Paper: https://arxiv.org/abs/2103.11402
- Code: None
**Adaptive Consistency Regularization for Semi-Supervised Transfer Learning**
- Paper: https://arxiv.org/abs/2103.02193
- Code: https://github.com/SHI-Labs/Semi-Supervised-Transfer-Learning
# 胶囊网络(Capsule Network)
**Capsule Network is Not More Robust than Convolutional Network**
- Paper: https://arxiv.org/abs/2103.15459
- Code: None
# 图像分类(Image Classification)
**Correlated Input-Dependent Label Noise in Large-Scale Image Classification**
- Paper(Oral): https://arxiv.org/abs/2105.10305
- Code: https://github.com/google/uncertainty-baselines/tree/master/baselines/imagenet
# 2D目标检测(Object Detection)
## 2D目标检测
**1. Scaled-YOLOv4: Scaling Cross Stage Partial Network**
- 作者单位: 中央研究院, 英特尔, 静宜大学
- Paper: https://arxiv.org/abs/2011.08036
- Code: https://github.com/WongKinYiu/ScaledYOLOv4
- 中文解读: [YOLOv4官方改进版来了!55.8% AP!速度最高达1774 FPS,Scaled-YOLOv4正式开源!](https://mp.weixin.qq.com/s/AcrJPNoAVhn8cGBUGK7ekA)
**2. You Only Look One-level Feature**
- 作者单位: 中科院, 国科大, 旷视科技
- Paper: https://arxiv.org/abs/2103.09460
- Code: https://github.com/megvii-model/YOLOF
- 中文解读: [CVPR 2021 | 没有FPN!中科院&旷视提出YOLOF:你只需看一层特征](https://mp.weixin.qq.com/s/EJqAG1gTVaP2icI6QL742A)
**3. Sparse R-CNN: End-to-End Object Detection with Learnable Proposals**
- 作者单位: 香港大学, 同济大学, 字节跳动AI Lab, 加利福尼亚大学伯克利分校
- Paper: https://arxiv.org/abs/2011.12450
- Code: https://github.com/PeizeSun/SparseR-CNN
- 中文解读: [目标检测新范式!港大同济伯克利提出Sparse R-CNN,代码刚刚开源!](https://mp.weixin.qq.com/s/P2Zgh1wTqf8L2976El5nfQ)
**4. End-to-End Object Detection with Fully Convolutional Network**
- 作者单位: 旷视科技, 西安交通大学
- Paper: https://arxiv.org/abs/2012.03544
- Code: https://github.com/Megvii-BaseDetection/DeFCN
**5. Dynamic Head: Unifying Object Detection Heads with Attentions**
- 作者单位: 微软
- Paper: https://arxiv.org/abs/2106.08322
- Code: https://github.com/microsoft/DynamicHead
- 中文解读: [60.6 AP!打破COCO记录!微软提出DyHead:将注意力与目标检测Heads统一](https://mp.weixin.qq.com/s/uYPUqVXwNau71VAYW3bYIA)
**6. Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection**
- 作者单位: 南京理工大学, Momenta, 南京大学, 清华大学
- Paper: https://arxiv.org/abs/2011.12885
- Code: https://github.com/implus/GFocalV2
- 中文解读:[CVPR 2021 | GFLV2:目标检测良心技术,无Cost涨点!](https://mp.weixin.qq.com/s/JB7k3NwXU-cDueg6w9mghQ)
**7. UP-DETR: Unsupervised Pre-training for Object Detection with Transformers**
- 作者单位: 华南理工大学, 腾讯微信AI
- Paper(Oral): https://arxiv.org/abs/2011.09094
- Code: https://github.com/dddzg/up-detr
- 中文解读: [CVPR 2021 Oral | Transformer再发力!华南理工和微信提出UP-DETR:无监督预训练检测器](https://mp.weixin.qq.com/s/Hprp7B16SGFhVEKXfKiRBQ)
**8. MobileDets: Searching for Object Detection Architectures for Mobile Accelerators**
- 作者单位: 威斯康星大学, 谷歌
- Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Xiong_MobileDets_Searching_for_Object_Detection_Architectures_for_Mobile_Accelerators_CVPR_2021_paper.pdf
- Code: https://github.com/tensorflow/models/tree/master/research/object_detection
**9. Tracking Pedestrian Heads in Dense Crowd**
- 作者单位: 雷恩第一大学
- Homepage: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sundararaman_Tracking_Pedestrian_Heads_in_Dense_Crowd_CVPR_2021_paper.html
- Code1: https://github.com/Sentient07/HeadHunter
- Code2: https://github.com/Sentient07/HeadHunter%E2%80%93T
- Dataset: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
**10. Joint-DetNAS: Upgrade Your Detector with NAS, Pruning and Dynamic Distillation**
- 作者单位: 香港科技大学, 华为诺亚
- Paper: https://arxiv.org/abs/2105.12971
- Code: None
**11. PSRR-MaxpoolNMS: Pyramid Shifted MaxpoolNMS with Relationship Recovery**
- 作者单位: A*star, 四川大学, 南洋理工大学
- Paper: https://arxiv.org/abs/2105.12990
- Code: None
**12. IQDet: Instance-wise Quality Distribution Sampling for Object Detection**
- 作者单位: 旷视科技
- Paper: https://arxiv.org/abs/2104.06936
- Code: None
**13. Multi-Scale Aligned Distillation for Low-Resolution Detection**
- 作者单位: 香港中文大学, Adobe研究院, 思谋科技
- Paper: https://jiaya.me/papers/ms_align_distill_cvpr21.pdf
- Code: https://github.com/Jia-Research-Lab/MSAD
**14. Adaptive Class Suppression Loss for Long-Tail Object Detection**
- 作者单位: 中科院, 国科大, ObjectEye, 北京大学, 鹏城实验室, Nexwise
- Paper: https://arxiv.org/abs/2104.00885
- Code: https://github.com/CASIA-IVA-Lab/ACSL
**15. VarifocalNet: An IoU-aware Dense Object Detector**
- 作者单位: 昆士兰科技大学, 昆士兰大学
- Paper(Oral): https://arxiv.org/abs/2008.13367
- Code: https://github.com/hyz-xmaster/VarifocalNet
**16. OTA: Optimal Transport Assignment for Object Detection**
- 作者单位: 早稻田大学, 旷视科技
- Paper: https://arxiv.org/abs/2103.14259
- Code: https://github.com/Megvii-BaseDetection/OTA
**17. Distilling Object Detectors via Decoupled Features**
- 作者单位: 华为诺亚, 悉尼大学
- Paper: https://arxiv.org/abs/2103.14475
- Code: https://github.com/ggjy/DeFeat.pytorch
**18. Robust and Accurate Object Detection via Adversarial Learning**
- 作者单位: 谷歌, UCLA, UCSC
- Paper: https://arxiv.org/abs/2103.13886
- Code: None
**19. OPANAS: One-Shot Path Aggregation Network Architecture Search for Object Detection**
- 作者单位: 北京大学, Anyvision, 石溪大学
- Paper: https://arxiv.org/abs/2103.04507
- Code: https://github.com/VDIGPKU/OPANAS
**20. Multiple Instance Active Learning for Object Detection**
- 作者单位: 国科大, 华为诺亚, 清华大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Yuan_Multiple_Instance_Active_Learning_for_Object_Detection_CVPR_2021_paper.pdf
- Code: https://github.com/yuantn/MI-AOD
**21. Towards Open World Object Detection**
- 作者单位: 印度理工学院, MBZUAI, 澳大利亚国立大学, 林雪平大学
- Paper(Oral): https://arxiv.org/abs/2103.02603
- Code: https://github.com/JosephKJ/OWOD
**22. RankDetNet: Delving Into Ranking Constraints for Object Detection**
- 作者单位: 赛灵思
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_RankDetNet_Delving_Into_Ranking_Constraints_for_Object_Detection_CVPR_2021_paper.html
- Code: None
## 旋转目标检测
**23. Dense Label Encoding for Boundary Discontinuity Free Rotation Detection**
- 作者单位: 上海交通大学, 国科大
- Paper: https://arxiv.org/abs/2011.09670
- Code1: https://github.com/Thinklab-SJTU/DCL_RetinaNet_Tensorflow
- Code2: https://github.com/yangxue0827/RotationDetection
**24. ReDet: A Rotation-equivariant Detector for Aerial Object Detection**
- 作者单位: 武汉大学
- Paper: https://arxiv.org/abs/2103.07733
- Code: https://github.com/csuhan/ReDet
**25. Beyond Bounding-Box: Convex-Hull Feature Adaptation for Oriented and Densely Packed Object Detection**
- 作者单位: 国科大, 清华大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Guo_Beyond_Bounding-Box_Convex-Hull_Feature_Adaptation_for_Oriented_and_Densely_Packed_CVPR_2021_paper.html
- Code: https://github.com/SDL-GuoZonghao/BeyondBoundingBox
## Few-Shot目标检测
**26. Accurate Few-Shot Object Detection With Support-Query Mutual Guidance and Hybrid Loss**
- 作者单位: 复旦大学, 同济大学, 浙江大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Accurate_Few-Shot_Object_Detection_With_Support-Query_Mutual_Guidance_and_Hybrid_CVPR_2021_paper.html
- Code: None
**27. Adaptive Image Transformer for One-Shot Object Detection**
- 作者单位: 中央研究院, 台湾AI Labs
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Adaptive_Image_Transformer_for_One-Shot_Object_Detection_CVPR_2021_paper.html
- Code: None
**28. Dense Relation Distillation with Context-aware Aggregation for Few-Shot Object Detection**
- 作者单位: 北京大学, 北邮
- Paper: https://arxiv.org/abs/2103.17115
- Code: https://github.com/hzhupku/DCNet
**29. Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection**
- 作者单位: 卡内基梅隆大学(CMU)
- Paper: https://arxiv.org/abs/2103.01903
- Code: None
**30. FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding**
- 作者单位: 南加利福尼亚大学, 旷视科技
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sun_FSCE_Few-Shot_Object_Detection_via_Contrastive_Proposal_Encoding_CVPR_2021_paper.html
- Code: https://github.com/MegviiDetection/FSCE
**31. Hallucination Improves Few-Shot Object Detection**
- 作者单位: 伊利诺伊大学厄巴纳-香槟分校
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Hallucination_Improves_Few-Shot_Object_Detection_CVPR_2021_paper.html
- Code: https://github.com/pppplin/HallucFsDet
**32. Few-Shot Object Detection via Classification Refinement and Distractor Retreatment**
- 作者单位: 新加坡国立大学, SIMTech
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Few-Shot_Object_Detection_via_Classification_Refinement_and_Distractor_Retreatment_CVPR_2021_paper.html
- Code: None
**33. Generalized Few-Shot Object Detection Without Forgetting**
- 作者单位: 旷视科技
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Fan_Generalized_Few-Shot_Object_Detection_Without_Forgetting_CVPR_2021_paper.html
- Code: None
**34. Transformation Invariant Few-Shot Object Detection**
- 作者单位: 华为诺亚方舟实验室
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Transformation_Invariant_Few-Shot_Object_Detection_CVPR_2021_paper.html
- Code: None
**35. UniT: Unified Knowledge Transfer for Any-Shot Object Detection and Segmentation**
- 作者单位: 不列颠哥伦比亚大学, Vector AI, CIFAR AI Chair
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Khandelwal_UniT_Unified_Knowledge_Transfer_for_Any-Shot_Object_Detection_and_Segmentation_CVPR_2021_paper.html
- Code: https://github.com/ubc-vision/UniT
**36. Beyond Max-Margin: Class Margin Equilibrium for Few-Shot Object Detection**
- 作者单位: 国科大, 厦门大学, 鹏城实验室
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Beyond_Max-Margin_Class_Margin_Equilibrium_for_Few-Shot_Object_Detection_CVPR_2021_paper.html
- Code: https://github.com/Bohao-Lee/CME
## 半监督目标检测
**37. Points As Queries: Weakly Semi-Supervised Object Detection by Points]**
- 作者单位: 旷视科技, 复旦大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Points_As_Queries_Weakly_Semi-Supervised_Object_Detection_by_Points_CVPR_2021_paper.html
- Code: None
**38. Data-Uncertainty Guided Multi-Phase Learning for Semi-Supervised Object Detection**
- 作者单位: 清华大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Data-Uncertainty_Guided_Multi-Phase_Learning_for_Semi-Supervised_Object_Detection_CVPR_2021_paper.html
- Code: None
**39. Positive-Unlabeled Data Purification in the Wild for Object Detection**
- 作者单位: 华为诺亚方舟实验室, 悉尼大学, 北京大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Guo_Positive-Unlabeled_Data_Purification_in_the_Wild_for_Object_Detection_CVPR_2021_paper.html
- Code: None
**40. Interactive Self-Training With Mean Teachers for Semi-Supervised Object Detection**
- 作者单位: 阿里巴巴, 香港理工大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Yang_Interactive_Self-Training_With_Mean_Teachers_for_Semi-Supervised_Object_Detection_CVPR_2021_paper.html
- Code: None
**41. Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework**
- 作者单位: 阿里巴巴
- Paper: https://arxiv.org/abs/2103.11402
- Code: None
**42. Humble Teachers Teach Better Students for Semi-Supervised Object Detection**
- 作者单位: 卡内基梅隆大学(CMU), 亚马逊
- Homepage: https://yihet.com/humble-teacher
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Tang_Humble_Teachers_Teach_Better_Students_for_Semi-Supervised_Object_Detection_CVPR_2021_paper.html
- Code: https://github.com/lryta/HumbleTeacher
**43. Interpolation-Based Semi-Supervised Learning for Object Detection**
- 作者单位: 首尔大学, 阿尔托大学等
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Jeong_Interpolation-Based_Semi-Supervised_Learning_for_Object_Detection_CVPR_2021_paper.html
- Code: https://github.com/soo89/ISD-SSD
# 域自适应目标检测
**44. Domain-Specific Suppression for Adaptive Object Detection**
- 作者单位: 中科院, 寒武纪, 国科大
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Domain-Specific_Suppression_for_Adaptive_Object_Detection_CVPR_2021_paper.html
- Code: None
**45. MeGA-CDA: Memory Guided Attention for Category-Aware Unsupervised Domain Adaptive Object Detection**
- 作者单位: 约翰斯·霍普金斯大学, 梅赛德斯—奔驰
- Paper: https://arxiv.org/abs/2103.04224
- Code: None
**46. Unbiased Mean Teacher for Cross-Domain Object Detection**
- 作者单位: 电子科技大学, ETH Zurich
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Deng_Unbiased_Mean_Teacher_for_Cross-Domain_Object_Detection_CVPR_2021_paper.html
- Code: https://github.com/kinredon/umt
**47. I^3Net: Implicit Instance-Invariant Network for Adapting One-Stage Object Detectors**
- 作者单位: 香港大学, 厦门大学, Deepwise AI Lab
- Paper: https://arxiv.org/abs/2103.13757
- Code: None
## 自监督目标检测
**48. There Is More Than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking With Sound by Distilling Multimodal Knowledge**
- 作者单位: 弗莱堡大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Valverde_There_Is_More_Than_Meets_the_Eye_Self-Supervised_Multi-Object_Detection_CVPR_2021_paper.html
- Code: http://rl.uni-freiburg.de/research/multimodal-distill
**49. Instance Localization for Self-supervised Detection Pretraining**
- 作者单位: 香港中文大学, 微软亚洲研究院
- Paper: https://arxiv.org/abs/2102.08318
- Code: https://github.com/limbo0000/InstanceLoc
## 弱监督目标检测
**50. Informative and Consistent Correspondence Mining for Cross-Domain Weakly Supervised Object Detection**
- 作者单位: 北航, 鹏城实验室, 商汤科技
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Hou_Informative_and_Consistent_Correspondence_Mining_for_Cross-Domain_Weakly_Supervised_Object_CVPR_2021_paper.html
- Code: None
**51. DAP: Detection-Aware Pre-training with Weak Supervision**
- 作者单位: UIUC, 微软
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhong_DAP_Detection-Aware_Pre-Training_With_Weak_Supervision_CVPR_2021_paper.html
- Code: None
## 其他
**52. Open-Vocabulary Object Detection Using Captions**
- 作者单位:Snap, 哥伦比亚大学
- Paper(Oral): https://openaccess.thecvf.com/content/CVPR2021/html/Zareian_Open-Vocabulary_Object_Detection_Using_Captions_CVPR_2021_paper.html
- Code: https://github.com/alirezazareian/ovr-cnn
**53. Depth From Camera Motion and Object Detection**
- 作者单位: 密歇根大学, SIAI
- Paper: https://arxiv.org/abs/2103.01468
- Code: https://github.com/griffbr/ODMD
- Dataset: https://github.com/griffbr/ODMD
**54. Unsupervised Object Detection With LIDAR Clues**
- 作者单位: 商汤科技, 国科大, 中科大
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Tian_Unsupervised_Object_Detection_With_LIDAR_Clues_CVPR_2021_paper.html
- Code: None
**55. GAIA: A Transfer Learning System of Object Detection That Fits Your Needs**
- 作者单位: 国科大, 北理, 中科院, 商汤科技
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Bu_GAIA_A_Transfer_Learning_System_of_Object_Detection_That_Fits_CVPR_2021_paper.html
- Code: https://github.com/GAIA-vision/GAIA-det
**56. General Instance Distillation for Object Detection**
- 作者单位: 旷视科技, 北航
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Dai_General_Instance_Distillation_for_Object_Detection_CVPR_2021_paper.html
- Code: None
**57. AQD: Towards Accurate Quantized Object Detection**
- 作者单位: 蒙纳士大学, 阿德莱德大学, 华南理工大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_AQD_Towards_Accurate_Quantized_Object_Detection_CVPR_2021_paper.html
- Code: https://github.com/aim-uofa/model-quantization
**58. Scale-Aware Automatic Augmentation for Object Detection**
- 作者单位: 香港中文大学, 字节跳动AI Lab, 思谋科技
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Scale-Aware_Automatic_Augmentation_for_Object_Detection_CVPR_2021_paper.html
- Code: https://github.com/Jia-Research-Lab/SA-AutoAug
**59. Equalization Loss v2: A New Gradient Balance Approach for Long-Tailed Object Detection**
- 作者单位: 同济大学, 商汤科技, 清华大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Tan_Equalization_Loss_v2_A_New_Gradient_Balance_Approach_for_Long-Tailed_CVPR_2021_paper.html
- Code: https://github.com/tztztztztz/eqlv2
**60. Class-Aware Robust Adversarial Training for Object Detection**
- 作者单位: 哥伦比亚大学, 中央研究院
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Class-Aware_Robust_Adversarial_Training_for_Object_Detection_CVPR_2021_paper.html
- Code: None
**61. Improved Handling of Motion Blur in Online Object Detection**
- 作者单位: 伦敦大学学院
- Homepage: http://visual.cs.ucl.ac.uk/pubs/handlingMotionBlur/
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sayed_Improved_Handling_of_Motion_Blur_in_Online_Object_Detection_CVPR_2021_paper.html
- Code: None
**62. Multiple Instance Active Learning for Object Detection**
- 作者单位: 国科大, 华为诺亚
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Yuan_Multiple_Instance_Active_Learning_for_Object_Detection_CVPR_2021_paper.html
- Code: https://github.com/yuantn/MI-AOD
**63. Neural Auto-Exposure for High-Dynamic Range Object Detection**
- 作者单位: Algolux, 普林斯顿大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Onzon_Neural_Auto-Exposure_for_High-Dynamic_Range_Object_Detection_CVPR_2021_paper.html
- Code: None
**64. Generalizable Pedestrian Detection: The Elephant in the Room**
- 作者单位: IIAI, 阿尔托大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Hasan_Generalizable_Pedestrian_Detection_The_Elephant_in_the_Room_CVPR_2021_paper.html
- Code: https://github.com/hasanirtiza/Pedestron
**65. Neural Auto-Exposure for High-Dynamic Range Object Detection**
- 作者单位: Algolux, 普林斯顿大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Onzon_Neural_Auto-Exposure_for_High-Dynamic_Range_Object_Detection_CVPR_2021_paper.html
- Code: None
# 单/多目标跟踪(Object Tracking)
## 单目标跟踪
**LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search**
- Paper: https://arxiv.org/abs/2104.14545
- Code: https://github.com/researchmm/LightTrack
**Towards More Flexible and Accurate Object Tracking with Natural Language: Algorithms and Benchmark**
- Homepage: https://sites.google.com/view/langtrackbenchmark/
- Paper: https://arxiv.org/abs/2103.16746
- Evaluation Toolkit: https://github.com/wangxiao5791509/TNL2K_evaluation_toolkit
- Demo Video: https://www.youtube.com/watch?v=7lvVDlkkff0&ab_channel=XiaoWang
**IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for Visual Object Tracking**
- Paper: https://arxiv.org/abs/2103.14938
- Code: https://github.com/VISION-SJTU/IoUattack
**Graph Attention Tracking**
- Paper: https://arxiv.org/abs/2011.11204
- Code: https://github.com/ohhhyeahhh/SiamGAT
**Rotation Equivariant Siamese Networks for Tracking**
- Paper: https://arxiv.org/abs/2012.13078
- Code: None
**Track to Detect and Segment: An Online Multi-Object Tracker**
- Homepage: https://jialianwu.com/projects/TraDeS.html
- Paper: None
- Code: None
**Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking**
- Paper(Oral): https://arxiv.org/abs/2103.11681
- Code: https://github.com/594422814/TransformerTrack
**Transformer Tracking**
- Paper: https://arxiv.org/abs/2103.15436
- Code: https://github.com/chenxin-dlut/TransT
## 多目标跟踪
**Tracking Pedestrian Heads in Dense Crowd**
- Homepage: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sundararaman_Tracking_Pedestrian_Heads_in_Dense_Crowd_CVPR_2021_paper.html
- Code1: https://github.com/Sentient07/HeadHunter
- Code2: https://github.com/Sentient07/HeadHunter%E2%80%93T
- Dataset: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
**Multiple Object Tracking with Correlation Learning**
- Paper: https://arxiv.org/abs/2104.03541
- Code: None
**Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking**
- Paper: https://arxiv.org/abs/2012.02337
- Code: None
**Learning a Proposal Classifier for Multiple Object Tracking**
- Paper: https://arxiv.org/abs/2103.07889
- Code: https://github.com/daip13/LPC_MOT.git
**Track to Detect and Segment: An Online Multi-Object Tracker**
- Homepage: https://jialianwu.com/projects/TraDeS.html
- Paper: https://arxiv.org/abs/2103.08808
- Code: https://github.com/JialianW/TraDeS
# 语义分割(Semantic Segmentation)
**1. HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation**
- 作者单位: Facebook AI, 巴伊兰大学, 特拉维夫大学
- Homepage: https://nirkin.com/hyperseg/
- Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Nirkin_HyperSeg_Patch-Wise_Hypernetwork_for_Real-Time_Semantic_Segmentation_CVPR_2021_paper.pdf
- Code: https://github.com/YuvalNirkin/hyperseg
**2. Rethinking BiSeNet For Real-time Semantic Segmentation**
- 作者单位: 美团
- Paper: https://arxiv.org/abs/2104.13188
- Code: https://github.com/MichaelFan01/STDC-Seg
**3. Progressive Semantic Segmentation**
- 作者单位: VinAI Research, VinUniversity, 阿肯色大学, 石溪大学
- Paper: https://arxiv.org/abs/2104.03778
- Code: https://github.com/VinAIResearch/MagNet
**4. Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers**
- 作者单位: 复旦大学, 牛津大学, 萨里大学, 腾讯优图, Facebook AI
- Homepage: https://fudan-zvg.github.io/SETR
- Paper: https://arxiv.org/abs/2012.15840
- Code: https://github.com/fudan-zvg/SETR
**5. Capturing Omni-Range Context for Omnidirectional Segmentation**
- 作者单位: 卡尔斯鲁厄理工学院, 卡尔·蔡司, 华为
- Paper: https://arxiv.org/abs/2103.05687
- Code: None
**6. Learning Statistical Texture for Semantic Segmentation**
- 作者单位: 北航, 商汤科技
- Paper: https://arxiv.org/abs/2103.04133
- Code: None
**7. InverseForm: A Loss Function for Structured Boundary-Aware Segmentation**
- 作者单位: 高通AI研究院
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Borse_InverseForm_A_Loss_Function_for_Structured_Boundary-Aware_Segmentation_CVPR_2021_paper.html
- Code: None
**8. DCNAS: Densely Connected Neural Architecture Search for Semantic Image Segmentation**
- 作者单位: Joyy Inc, 快手, 北航等
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_DCNAS_Densely_Connected_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2021_paper.html
- Code: None
## 弱监督语义分割
**9. Railroad Is Not a Train: Saliency As Pseudo-Pixel Supervision for Weakly Supervised Semantic Segmentation**
- 作者单位: 延世大学, 成均馆大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Lee_Railroad_Is_Not_a_Train_Saliency_As_Pseudo-Pixel_Supervision_for_CVPR_2021_paper.html
- Code: https://github.com/halbielee/EPS
**10. Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation**
- 作者单位: 延世大学
- Homepage: https://cvlab.yonsei.ac.kr/projects/BANA/
- Paper: https://arxiv.org/abs/2104.00905
- Code: None
**11. Non-Salient Region Object Mining for Weakly Supervised Semantic Segmentation**
- 作者单位: 南京理工大学, MBZUAI, 电子科技大学, 阿德莱德大学, 悉尼科技大学
- Paper: https://arxiv.org/abs/2103.14581
- Code: https://github.com/NUST-Machine-Intelligence-Laboratory/nsrom
**12. Embedded Discriminative Attention Mechanism for Weakly Supervised Semantic Segmentation**
- 作者单位: 北京理工大学, 美团
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wu_Embedded_Discriminative_Attention_Mechanism_for_Weakly_Supervised_Semantic_Segmentation_CVPR_2021_paper.html
- Code: https://github.com/allenwu97/EDAM
**13. BBAM: Bounding Box Attribution Map for Weakly Supervised Semantic and Instance Segmentation**
- 作者单位: 首尔大学
- Paper: https://arxiv.org/abs/2103.08907
- Code: https://github.com/jbeomlee93/BBAM
## 半监督语义分割
**14. Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision**
- 作者单位: 北京大学, 微软亚洲研究院
- Paper: https://arxiv.org/abs/2106.01226
- Code: https://github.com/charlesCXK/TorchSemiSeg
**15. Semi-supervised Domain Adaptation based on Dual-level Domain Mixing for Semantic Segmentation**
- 作者单位: 华为, 大连理工大学, 北京大学
- Paper: https://arxiv.org/abs/2103.04705
- Code: None
**16. Semi-Supervised Semantic Segmentation With Directional Context-Aware Consistency**
- 作者单位: 香港中文大学, 思谋科技, 牛津大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Lai_Semi-Supervised_Semantic_Segmentation_With_Directional_Context-Aware_Consistency_CVPR_2021_paper.html
- Code: None
**17. Semantic Segmentation With Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization**
- 作者单位: NVIDIA, 多伦多大学, 耶鲁大学, MIT, Vector Institute
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Semantic_Segmentation_With_Generative_Models_Semi-Supervised_Learning_and_Strong_Out-of-Domain_CVPR_2021_paper.html
- Code: https://nv-tlabs.github.io/semanticGAN/
**18. Three Ways To Improve Semantic Segmentation With Self-Supervised Depth Estimation**
- 作者单位: ETH Zurich, 伯恩大学, 鲁汶大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Hoyer_Three_Ways_To_Improve_Semantic_Segmentation_With_Self-Supervised_Depth_Estimation_CVPR_2021_paper.html
- Code: https://github.com/lhoyer/improving_segmentation_with_selfsupervised_depth
## 域自适应语义分割
**19. Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain Adaptive Semantic Segmentation**
- 作者单位: ETH Zurich, 鲁汶大学, 电子科技大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Gong_Cluster_Split_Fuse_and_Update_Meta-Learning_for_Open_Compound_Domain_CVPR_2021_paper.html
- Code: None
**20. Source-Free Domain Adaptation for Semantic Segmentation**
- 作者单位: 华东师范大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Source-Free_Domain_Adaptation_for_Semantic_Segmentation_CVPR_2021_paper.html
- Code: None
**21. Uncertainty Reduction for Model Adaptation in Semantic Segmentation**
- 作者单位: Idiap Research Institute, EPFL, 日内瓦大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/S_Uncertainty_Reduction_for_Model_Adaptation_in_Semantic_Segmentation_CVPR_2021_paper.html
- Code: https://git.io/JthPp
**22. Self-Supervised Augmentation Consistency for Adapting Semantic Segmentation**
- 作者单位: 达姆施塔特工业大学, hessian.AI
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Araslanov_Self-Supervised_Augmentation_Consistency_for_Adapting_Semantic_Segmentation_CVPR_2021_paper.html
- Code: https://github.com/visinf/da-sac
**23. RobustNet: Improving Domain Generalization in Urban-Scene Segmentation via Instance Selective Whitening**
- 作者单位: LG AI研究院, KAIST等
- Paper: https://arxiv.org/abs/2103.15597
- Code: https://github.com/shachoi/RobustNet
**24. Coarse-to-Fine Domain Adaptive Semantic Segmentation with Photometric Alignment and Category-Center Regularization**
- 作者单位: 香港大学, 深睿医疗
- Paper: https://arxiv.org/abs/2103.13041
- Code: None
**25. MetaCorrection: Domain-aware Meta Loss Correction for Unsupervised Domain Adaptation in Semantic Segmentation**
- 作者单位: 香港城市大学, 百度
- Paper: https://arxiv.org/abs/2103.05254
- Code: https://github.com/cyang-cityu/MetaCorrection
**26. Multi-Source Domain Adaptation with Collaborative Learning for Semantic Segmentation**
- 作者单位: 华为云, 华为诺亚, 大连理工大学
- Paper: https://arxiv.org/abs/2103.04717
- Code: None
**27. Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation**
- 作者单位: 中国科学技术大学, 微软亚洲研究院
- Paper: https://arxiv.org/abs/2101.10979
- Code: https://github.com/microsoft/ProDA
**28. DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation**
- 作者单位: 南卡罗来纳大学, 天远视科技
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wu_DANNet_A_One-Stage_Domain_Adaptation_Network_for_Unsupervised_Nighttime_Semantic_CVPR_2021_paper.html
- Code: https://github.com/W-zx-Y/DANNet
## Few-Shot语义分割
**29. Scale-Aware Graph Neural Network for Few-Shot Semantic Segmentation**
- 作者单位: MBZUAI, IIAI, 哈工大
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Xie_Scale-Aware_Graph_Neural_Network_for_Few-Shot_Semantic_Segmentation_CVPR_2021_paper.html
- Code: None
**30. Anti-Aliasing Semantic Reconstruction for Few-Shot Semantic Segmentation**
- 作者单位: 国科大, 清华大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Anti-Aliasing_Semantic_Reconstruction_for_Few-Shot_Semantic_Segmentation_CVPR_2021_paper.html
- Code: https://github.com/Bibkiller/ASR
## 无监督语义分割
**31. PiCIE: Unsupervised Semantic Segmentation Using Invariance and Equivariance in Clustering**
- 作者单位: UT-Austin, 康奈尔大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Cho_PiCIE_Unsupervised_Semantic_Segmentation_Using_Invariance_and_Equivariance_in_Clustering_CVPR_2021_paper.html
- Code: https:// github.com/janghyuncho/PiCIE
## 视频语义分割
**32. VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild**
- 作者单位: 浙江大学, 百度, 悉尼科技大学
- Homepage: https://www.vspwdataset.com/
- Paper: https://www.vspwdataset.com/CVPR2021__miao.pdf
- GitHub: https://github.com/sssdddwww2/vspw_dataset_download
## 其它
**33. Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations**
- 作者单位: 帕多瓦大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Michieli_Continual_Semantic_Segmentation_via_Repulsion-Attraction_of_Sparse_and_Disentangled_Latent_CVPR_2021_paper.html
- Code: https://lttm.dei.unipd.it/paper_data/SDR/
**34. Exploit Visual Dependency Relations for Semantic Segmentation**
- 作者单位: 伊利诺伊大学芝加哥分校
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Exploit_Visual_Dependency_Relations_for_Semantic_Segmentation_CVPR_2021_paper.html
- Code: None
**35. Revisiting Superpixels for Active Learning in Semantic Segmentation With Realistic Annotation Costs**
- 作者单位: Institute for Infocomm Research, 新加坡国立大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Cai_Revisiting_Superpixels_for_Active_Learning_in_Semantic_Segmentation_With_Realistic_CVPR_2021_paper.html
- Code: None
**36. PLOP: Learning without Forgetting for Continual Semantic Segmentation**
- 作者单位: 索邦大学, Heuritech, Datakalab, Valeo.ai
- Paper: https://arxiv.org/abs/2011.11390
- Code: https://github.com/arthurdouillard/CVPR2021_PLOP
**37. 3D-to-2D Distillation for Indoor Scene Parsing**
- 作者单位: 香港中文大学, 香港大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_3D-to-2D_Distillation_for_Indoor_Scene_Parsing_CVPR_2021_paper.html
- Code: None
**38. Bidirectional Projection Network for Cross Dimension Scene Understanding**
- 作者单位: 香港中文大学, 牛津大学等
- Paper(Oral): https://arxiv.org/abs/2103.14326
- Code: https://github.com/wbhu/BPNet
**39. PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation**
- 作者单位: 北京大学, 中科院, 国科大, ETH Zurich, 商汤科技等
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_PointFlow_Flowing_Semantics_Through_Points_for_Aerial_Image_Segmentation_CVPR_2021_paper.html
- Code: https://github.com/lxtGH/PFSegNets
# 实例分割(Instance Segmentation)
**DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation**
- Paper: https://arxiv.org/abs/2011.09876
- Code: https://github.com/aliyun/DCT-Mask
**Incremental Few-Shot Instance Segmentation**
- Paper: https://arxiv.org/abs/2105.05312
- Code: https://github.com/danganea/iMTFA
**A^2-FPN: Attention Aggregation based Feature Pyramid Network for Instance Segmentation**
- Paper: https://arxiv.org/abs/2105.03186
- Code: None
**RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features**
- Paper: https://arxiv.org/abs/2104.08569
- Code: https://github.com/zhanggang001/RefineMask/
**Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation**
- Paper: https://arxiv.org/abs/2104.05239
- Code: https://github.com/tinyalpha/BPR
**Multi-Scale Aligned Distillation for Low-Resolution Detection**
- Paper: https://jiaya.me/papers/ms_align_distill_cvpr21.pdf
- Code: https://github.com/Jia-Research-Lab/MSAD
**Boundary IoU: Improving Object-Centric Image Segmentation Evaluation**
- Homepage: https://bowenc0221.github.io/boundary-iou/
- Paper: https://arxiv.org/abs/2103.16562
- Code: https://github.com/bowenc0221/boundary-iou-api
**Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers**
- Paper: https://arxiv.org/abs/2103.12340
- Code: https://github.com/lkeab/BCNet
**Zero-shot instance segmentation(Not Sure)**
- Paper: None
- Code: https://github.com/CVPR2021-pape-id-1395/CVPR2021-paper-id-1395
## 视频实例分割
**STMask: Spatial Feature Calibration and Temporal Fusion for Effective One-stage Video Instance Segmentation**
- Paper: http://www4.comp.polyu.edu.hk/~cslzhang/papers.htm
- Code: https://github.com/MinghanLi/STMask
**End-to-End Video Instance Segmentation with Transformers**
- Paper(Oral): https://arxiv.org/abs/2011.14503
- Code: https://github.com/Epiphqny/VisTR
# 全景分割(Panoptic Segmentation)
**ViP-DeepLab: Learning Visual Perception with Depth-aware Video Panoptic Segmentation**
- Paper: https://arxiv.org/abs/2012.05258
- Code: https://github.com/joe-siyuan-qiao/ViP-DeepLab
- Dataset: https://github.com/joe-siyuan-qiao/ViP-DeepLab
**Part-aware Panoptic Segmentation**
- Paper: https://arxiv.org/abs/2106.06351
- Code: https://github.com/tue-mps/panoptic_parts
- Dataset: https://github.com/tue-mps/panoptic_parts
**Exemplar-Based Open-Set Panoptic Segmentation Network**
- Homepage: https://cv.snu.ac.kr/research/EOPSN/
- Paper: https://arxiv.org/abs/2105.08336
- Code: https://github.com/jd730/EOPSN
**MaX-DeepLab: End-to-End Panoptic Segmentation With Mask Transformers**
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_MaX-DeepLab_End-to-End_Panoptic_Segmentation_With_Mask_Transformers_CVPR_2021_paper.html
- Code: None
**Panoptic Segmentation Forecasting**
- Paper: https://arxiv.org/abs/2104.03962
- Code: https://github.com/nianticlabs/panoptic-forecasting
**Fully Convolutional Networks for Panoptic Segmentation**
- Paper: https://arxiv.org/abs/2012.00720
- Code: https://github.com/yanwei-li/PanopticFCN
**Cross-View Regularization for Domain Adaptive Panoptic Segmentation**
- Paper: https://arxiv.org/abs/2103.02584
- Code: None
# 医学图像分割
**1. Learning Calibrated Medical Image Segmentation via Multi-Rater Agreement Modeling**
- 作者单位: 腾讯天衍实验室, 北京同仁医院
- Paper(Best Paper Candidate): https://openaccess.thecvf.com/content/CVPR2021/html/Ji_Learning_Calibrated_Medical_Image_Segmentation_via_Multi-Rater_Agreement_Modeling_CVPR_2021_paper.html
- Code: https://github.com/jiwei0921/MRNet/
**2. Every Annotation Counts: Multi-Label Deep Supervision for Medical Image Segmentation**
- 作者单位: 卡尔斯鲁厄理工学院, 卡尔·蔡司等
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Reiss_Every_Annotation_Counts_Multi-Label_Deep_Supervision_for_Medical_Image_Segmentation_CVPR_2021_paper.html
- Code: None
**3. FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space**
- 作者单位: 香港中文大学, 香港理工大学
- Paper: https://arxiv.org/abs/2103.06030
- Code: https://github.com/liuquande/FedDG-ELCFS
**4. DiNTS: Differentiable Neural Network Topology Search for 3D Medical Image Segmentation**
- 作者单位: 约翰斯·霍普金斯大大学, NVIDIA
- Paper(Oral): https://arxiv.org/abs/2103.15954
- Code: None
**5. DARCNN: Domain Adaptive Region-Based Convolutional Neural Network for Unsupervised Instance Segmentation in Biomedical Images**
- 作者单位: 斯坦福大学
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Hsu_DARCNN_Domain_Adaptive_Region-Based_Convolutional_Neural_Network_for_Unsupervised_Instance_CVPR_2021_paper.html
- Code: None
# 视频目标分割(Video-Object-Segmentation)
**Learning Position and Target Consistency for Memory-based Video Object Segmentation**
- Paper: https://arxiv.org/abs/2104.04329
- Code: None
**SSTVOS: Sparse Spatiotemporal Transformers for Video Object Segmentation**
- Paper(Oral): https://arxiv.org/abs/2101.08833
- Code: https://github.com/dukebw/SSTVOS
# 交互式视频目标分割(Interactive-Video-Object-Segmentation)
**Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion**
- Homepage: https://hkchengrex.github.io/MiVOS/
- Paper: https://arxiv.org/abs/2103.07941
- Code: https://github.com/hkchengrex/MiVOS
- Demo: https://hkchengrex.github.io/MiVOS/video.html#partb
**Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild**
- Paper: https://arxiv.org/abs/2103.10391
- Code: https://github.com/svip-lab/IVOS-W
# 显著性检测(Saliency Detection)
**Uncertainty-aware Joint Salient Object and Camouflaged Object Detection**
- Paper: https://arxiv.org/abs/2104.02628
- Code: https://github.com/JingZhang617/Joint_COD_SOD
**Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion**
- Paper(Oral): https://arxiv.org/abs/2103.11832
- Code: https://github.com/sunpeng1996/DSA2F
# 伪装物体检测(Camouflaged Object Detection)
**Uncertainty-aware Joint Salient Object and Camouflaged Object Detection**
- Paper: https://arxiv.org/abs/2104.02628
- Code: https://github.com/JingZhang617/Joint_COD_SOD
# 协同显著性检测(Co-Salient Object Detection)
**Group Collaborative Learning for Co-Salient Object Detection**
- Paper: https://arxiv.org/abs/2104.01108
- Code: https://github.com/fanq15/GCoNet
# 协同显著性检测(Image Matting)
**Semantic Image Matting**
- Paper: https://arxiv.org/abs/2104.08201
- Code: https://github.com/nowsyn/SIM
- Dataset: https://github.com/nowsyn/SIM
# 行人重识别(Person Re-identification)
**Generalizable Person Re-identification with Relevance-aware Mixture of Experts**
- Paper: https://arxiv.org/abs/2105.09156
- Code: None
**Unsupervised Multi-Source Domain Adaptation for Person Re-Identification**
- Paper: https://arxiv.org/abs/2104.12961
- Code: None
**Combined Depth Space based Architecture Search For Person Re-identification**
- Paper: https://arxiv.org/abs/2104.04163
- Code: None
# 行人搜索(Person Search)
**Anchor-Free Person Search**
- Paper: https://arxiv.org/abs/2103.11617
- Code: https://github.com/daodaofr/AlignPS
- Interpretation: [首个无需锚框(Anchor-Free)的行人搜索框架 | CVPR 2021](https://mp.weixin.qq.com/s/iqJkgp0JBanmeBPyHUkb-A)
# 视频理解/行为识别(Video Understanding)
**Temporal-Relational CrossTransformers for Few-Shot Action Recognition**
- Paper: https://arxiv.org/abs/2101.06184
- Code: https://github.com/tobyperrett/trx
**FrameExit: Conditional Early Exiting for Efficient Video Recognition**
- Paper(Oral): https://arxiv.org/abs/2104.13400
- Code: None
**No frame left behind: Full Video Action Recognition**
- Paper: https://arxiv.org/abs/2103.15395
- Code: None
**Learning Salient Boundary Feature for Anchor-free Temporal Action Localization**
- Paper: https://arxiv.org/abs/2103.13137
- Code: None
**Temporal Context Aggregation Network for Temporal Action Proposal Refinement**
- Paper: https://arxiv.org/abs/2103.13141
- Code: None
- Interpretation: [CVPR 2021 | TCANet:最强时序动作提名修正网络](https://mp.weixin.qq.com/s/UOWMfpTljkyZznHtpkQBhA)
**ACTION-Net: Multipath Excitation for Action Recognition**
- Paper: https://arxiv.org/abs/2103.07372
- Code: https://github.com/V-Sense/ACTION-Net
**Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning**
- Homepage: https://fingerrec.github.io/index_files/jinpeng/papers/CVPR2021/project_website.html
- Paper: https://arxiv.org/abs/2009.05769
- Code: https://github.com/FingerRec/BE
**TDN: Temporal Difference Networks for Efficient Action Recognition**
- Paper: https://arxiv.org/abs/2012.10071
- Code: https://github.com/MCG-NJU/TDN
# 人脸识别(Face Recognition)
**A 3D GAN for Improved Large-pose Facial Recognition**
- Paper: https://arxiv.org/abs/2012.10545
- Code: None
**MagFace: A Universal Representation for Face Recognition and Quality Assessment**
- Paper(Oral): https://arxiv.org/abs/2103.06627
- Code: https://github.com/IrvingMeng/MagFace
**WebFace260M: A Benchmark Unveiling the Power of Million-Scale Deep Face Recognition**
- Homepage: https://www.face-benchmark.org/
- Paper: https://arxiv.org/abs/2103.04098
- Dataset: https://www.face-benchmark.org/
**When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework**
- Paper(Oral): https://arxiv.org/abs/2103.01520
- Code: https://github.com/Hzzone/MTLFace
- Dataset: https://github.com/Hzzone/MTLFace
# 人脸检测(Face Detection)
**HLA-Face: Joint High-Low Adaptation for Low Light Face Detection**
- Homepage: https://daooshee.github.io/HLA-Face-Website/
- Paper: https://arxiv.org/abs/2104.01984
- Code: https://github.com/daooshee/HLA-Face-Code
**CRFace: Confidence Ranker for Model-Agnostic Face Detection Refinement**
- Paper: https://arxiv.org/abs/2103.07017
- Code: None
# 人脸活体检测(Face Anti-Spoofing)
**Cross Modal Focal Loss for RGBD Face Anti-Spoofing**
- Paper: https://arxiv.org/abs/2103.00948
- Code: None
# Deepfake检测(Deepfake Detection)
**Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in Frequency Domain**
- Paper:https://arxiv.org/abs/2103.01856
- Code: None
**Multi-attentional Deepfake Detection**
- Paper:https://arxiv.org/abs/2103.02406
- Code: None
# 人脸年龄估计(Age Estimation)
**Continuous Face Aging via Self-estimated Residual Age Embedding**
- Paper: https://arxiv.org/abs/2105.00020
- Code: None
**PML: Progressive Margin Loss for Long-tailed Age Classification**
- Paper: https://arxiv.org/abs/2103.02140
- Code: None
# 人脸表情识别(Facial Expression Recognition)
**Affective Processes: stochastic modelling of temporal context for emotion and facial expression recognition**
- Paper: https://arxiv.org/abs/2103.13372
- Code: None
# Deepfakes
**MagDR: Mask-guided Detection and Reconstruction for Defending Deepfakes**
- Paper: https://arxiv.org/abs/2103.14211
- Code: None
# 人体解析(Human Parsing)
**Differentiable Multi-Granularity Human Representation Learning for Instance-Aware Human Semantic Parsing**
- Paper: https://arxiv.org/abs/2103.04570
- Code: https://github.com/tfzhou/MG-HumanParsing
# 2D/3D人体姿态估计(2D/3D Human Pose Estimation)
## 2D 人体姿态估计
**ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search**
- Paper: ttps://arxiv.org/abs/2105.10154
- Code: None
**When Human Pose Estimation Meets Robustness: Adversarial Algorithms and Benchmarks**
- Paper: https://arxiv.org/abs/2105.06152
- Code: None
**Pose Recognition with Cascade Transformers**
- Paper: https://arxiv.org/abs/2104.06976
- Code: https://github.com/mlpc-ucsd/PRTR
**DCPose: Deep Dual Consecutive Network for Human Pose Estimation**
- Paper: https://arxiv.org/abs/2103.07254
- Code: https://github.com/Pose-Group/DCPose
## 3D 人体姿态估计
**End-to-End Human Pose and Mesh Reconstruction with Transformers**
- Paper: https://arxiv.org/abs/2012.09760
- Code: https://github.com/microsoft/MeshTransformer
**PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation**
- Paper(Oral): https://arxiv.org/abs/2105.02465
- Code: https://github.com/jfzhang95/PoseAug
**Camera-Space Hand Mesh Recovery via Semantic Aggregation and Adaptive 2D-1D Registration**
- Paper: https://arxiv.org/abs/2103.02845
- Code: https://github.com/SeanChenxy/HandMesh
**Monocular 3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks**
- Paper: https://arxiv.org/abs/2104.01797
- https://github.com/3dpose/3D-Multi-Person-Pose
**HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estimation**
- Homepage: https://jeffli.site/HybrIK/
- Paper: https://arxiv.org/abs/2011.14672
- Code: https://github.com/Jeff-sjtu/HybrIK
# 动物姿态估计(Animal Pose Estimation)
**From Synthetic to Real: Unsupervised Domain Adaptation for Animal Pose Estimation**
- Paper: https://arxiv.org/abs/2103.14843
- Code: None
# 手部姿态估计(Hand Pose Estimation)
**Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time**
- Homepage: https://stevenlsw.github.io/Semi-Hand-Object/
- Paper: https://arxiv.org/abs/2106.05266
- Code: https://github.com/stevenlsw/Semi-Hand-Object
# Human Volumetric Capture
**POSEFusion: Pose-guided Selective Fusion for Single-view Human Volumetric Capture**
- Homepage: http://www.liuyebin.com/posefusion/posefusion.html
- Paper(Oral): https://arxiv.org/abs/2103.15331
- Code: None
# 场景文本检测(Scene Text Detection)
**Fourier Contour Embedding for Arbitrary-Shaped Text Detection**
- Paper: https://arxiv.org/abs/2104.10442
- Code: None
# 场景文本识别(Scene Text Recognition)
**Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition**
- Paper: https://arxiv.org/abs/2103.06495
- Code: https://github.com/FangShancheng/ABINet
# 图像压缩
**Checkerboard Context Model for Efficient Learned Image Compression**
- Paper: https://arxiv.org/abs/2103.15306
- Code: None
**Slimmable Compressive Autoencoders for Practical Neural Image Compression**
- Paper: https://arxiv.org/abs/2103.15726
- Code: None
**Attention-guided Image Compression by Deep Reconstruction of Compressive Sensed Saliency Skeleton**
- Paper: https://arxiv.org/abs/2103.15368
- Code: None
# 模型压缩/剪枝/量化
**Teachers Do More Than Teach: Compressing Image-to-Image Models**
- Paper: https://arxiv.org/abs/2103.03467
- Code: https://github.com/snap-research/CAT
## 模型剪枝
**Dynamic Slimmable Network**
- Paper: https://arxiv.org/abs/2103.13258
- Code: https://github.com/changlin31/DS-Net
## 模型量化
**Network Quantization with Element-wise Gradient Scaling**
- Paper: https://arxiv.org/abs/2104.00903
- Code: None
**Zero-shot Adversarial Quantization**
- Paper(Oral): https://arxiv.org/abs/2103.15263
- Code: https://git.io/Jqc0y
**Learnable Companding Quantization for Accurate Low-bit Neural Networks**
- Paper: https://arxiv.org/abs/2103.07156
- Code: None
# 知识蒸馏(Knowledge Distillation)
**Distilling Knowledge via Knowledge Review**
- Paper: https://arxiv.org/abs/2104.09044
- Code: https://github.com/Jia-Research-Lab/ReviewKD
**Distilling Object Detectors via Decoupled Features**
- Paper: https://arxiv.org/abs/2103.14475
- Code: https://github.com/ggjy/DeFeat.pytorch
# 超分辨率(Super-Resolution)
**Image Super-Resolution with Non-Local Sparse Attention**
- Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Mei_Image_Super-Resolution_With_Non-Local_Sparse_Attention_CVPR_2021_paper.pdf
- Code: https://github.com/HarukiYqM/Non-Local-Sparse-Attention
**Towards Fast and Accurate Real-World Depth Super-Resolution: Benchmark Dataset and Baseline**
- Homepage: http://mepro.bjtu.edu.cn/resource.html
- Paper: https://arxiv.org/abs/2104.06174
- Code: None
**ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic**
- Paper: https://arxiv.org/abs/2103.04039
- Code: https://github.com/Xiangtaokong/ClassSR
**AdderSR: Towards Energy Efficient Image Super-Resolution**
- Paper: https://arxiv.org/abs/2009.08891
- Code: None
# 去雾(Dehazing)
**Contrastive Learning for Compact Single Image Dehazing**
- Paper: https://arxiv.org/abs/2104.09367
- Code: https://github.com/GlassyWu/AECR-Net
## 视频超分辨率
**Temporal Modulation Network for Controllable Space-Time Video Super-Resolution**
- Paper: None
- Code: https://github.com/CS-GangXu/TMNet
# 图像恢复(Image Restoration)
**Multi-Stage Progressive Image Restoration**
- Paper: https://arxiv.org/abs/2102.02808
- Code: https://github.com/swz30/MPRNet
# 图像补全(Image Inpainting)
**PD-GAN: Probabilistic Diverse GAN for Image Inpainting**
- Paper: https://arxiv.org/abs/2105.02201
- Code: https://github.com/KumapowerLIU/PD-GAN
**TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations**
- Homepage: https://yzhouas.github.io/projects/TransFill/index.html
- Paper: https://arxiv.org/abs/2103.15982
- Code: None
# 图像编辑(Image Editing)
**StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing**
- Paper: https://arxiv.org/abs/2104.14754
- Code: https://github.com/naver-ai/StyleMapGAN
- Demo Video: https://youtu.be/qCapNyRA_Ng
**High-Fidelity and Arbitrary Face Editing**
- Paper: https://arxiv.org/abs/2103.15814
- Code: None
**Anycost GANs for Interactive Image Synthesis and Editing**
- Paper: https://arxiv.org/abs/2103.03243
- Code: https://github.com/mit-han-lab/anycost-gan
**PISE: Person Image Synthesis and Editing with Decoupled GAN**
- Paper: https://arxiv.org/abs/2103.04023
- Code: https://github.com/Zhangjinso/PISE
**DeFLOCNet: Deep Image Editing via Flexible Low-level Controls**
- Paper: http://raywzy.com/
- Code: http://raywzy.com/
**Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing**
- Paper: None
- Code: None
# 图像描述(Image Captioning)
**Towards Accurate Text-based Image Captioning with Content Diversity Exploration**
- Paper: https://arxiv.org/abs/2105.03236
- Code: None
# 字体生成(Font Generation)
**DG-Font: Deformable Generative Networks for Unsupervised Font Generation**
- Paper: https://arxiv.org/abs/2104.03064
- Code: https://github.com/ecnuycxie/DG-Font
# 图像匹配(Image Matcing)
**LoFTR: Detector-Free Local Feature Matching with Transformers**
- Homepage: https://zju3dv.github.io/loftr/
- Paper: https://arxiv.org/abs/2104.00680
- Code: https://github.com/zju3dv/LoFTR
**Convolutional Hough Matching Networks**
- Homapage: http://cvlab.postech.ac.kr/research/CHM/
- Paper(Oral): https://arxiv.org/abs/2103.16831
- Code: None
# 图像融合(Image Blending)
**Bridging the Visual Gap: Wide-Range Image Blending**
- Paper: https://arxiv.org/abs/2103.15149
- Code: https://github.com/julia0607/Wide-Range-Image-Blending
# 反光去除(Reflection Removal)
**Robust Reflection Removal with Reflection-free Flash-only Cues**
- Paper: https://arxiv.org/abs/2103.04273
- Code: https://github.com/ChenyangLEI/flash-reflection-removal
# 3D点云分类(3D Point Clouds Classification)
**Equivariant Point Network for 3D Point Cloud Analysis**
- Paper: https://arxiv.org/abs/2103.14147
- Code: None
**PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds**
- Paper: https://arxiv.org/abs/2103.14635
- Code: https://github.com/CVMI-Lab/PAConv
# 3D目标检测(3D Object Detection)
**3D-MAN: 3D Multi-frame Attention Network for Object Detection**
- Paper: https://arxiv.org/abs/2103.16054
- Code: None
**Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds**
- Paper: https://arxiv.org/abs/2104.06114
- Code: https://github.com/cheng052/BRNet
**HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object Detection**
- Homepage: https://cvlab.yonsei.ac.kr/projects/HVPR/
- Paper: https://arxiv.org/abs/2104.00902
- Code: https://github.com/cvlab-yonsei/HVPR
**LiDAR R-CNN: An Efficient and Universal 3D Object Detector**
- Paper: https://arxiv.org/abs/2103.15297
- Code: https://github.com/tusimple/LiDAR_RCNN
**M3DSSD: Monocular 3D Single Stage Object Detector**
- Paper: https://arxiv.org/abs/2103.13164
- Code: https://github.com/mumianyuxin/M3DSSD
**SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud**
- Paper: None
- Code: https://github.com/Vegeta2020/SE-SSD
**Center-based 3D Object Detection and Tracking**
- Paper: https://arxiv.org/abs/2006.11275
- Code: https://github.com/tianweiy/CenterPoint
**Categorical Depth Distribution Network for Monocular 3D Object Detection**
- Paper: https://arxiv.org/abs/2103.01100
- Code: None
# 3D语义分割(3D Semantic Segmentation)
**Bidirectional Projection Network for Cross Dimension Scene Understanding**
- Paper(Oral): https://arxiv.org/abs/2103.14326
- Code: https://github.com/wbhu/BPNet
**Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion**
- Paper: https://arxiv.org/abs/2103.07074
- Code: https://github.com/ShiQiu0419/BAAF-Net
**Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation**
- Paper: https://arxiv.org/abs/2011.10033
- Code: https://github.com/xinge008/Cylinder3D
**Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges**
- Homepage: https://github.com/QingyongHu/SensatUrban
- Paper: http://arxiv.org/abs/2009.03137
- Code: https://github.com/QingyongHu/SensatUrban
- Dataset: https://github.com/QingyongHu/SensatUrban
# 3D全景分割(3D Panoptic Segmentation)
**Panoptic-PolarNet: Proposal-free LiDAR Point Cloud Panoptic Segmentation**
- Paper: https://arxiv.org/abs/2103.14962
- Code: https://github.com/edwardzhou130/Panoptic-PolarNet
# 3D目标跟踪(3D Object Trancking)
**Center-based 3D Object Detection and Tracking**
- Paper: https://arxiv.org/abs/2006.11275
- Code: https://github.com/tianweiy/CenterPoint
# 3D点云配准(3D Point Cloud Registration)
**ReAgent: Point Cloud Registration using Imitation and Reinforcement Learning**
- Paper: https://arxiv.org/abs/2103.15231
- Code: None
**PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency**
- Paper: https://arxiv.org/abs/2103.05465
- Code: https://github.com/XuyangBai/PointDSC
**PREDATOR: Registration of 3D Point Clouds with Low Overlap**
- Paper: https://arxiv.org/abs/2011.13005
- Code: https://github.com/ShengyuH/OverlapPredator
# 3D点云补全(3D Point Cloud Completion)
**Unsupervised 3D Shape Completion through GAN Inversion**
- Homepage: https://junzhezhang.github.io/projects/ShapeInversion/
- Paper: https://arxiv.org/abs/2104.13366
- Code: https://github.com/junzhezhang/shape-inversion
**Variational Relational Point Completion Network**
- Homepage: https://paul007pl.github.io/projects/VRCNet
- Paper: https://arxiv.org/abs/2104.10154
- Code: https://github.com/paul007pl/VRCNet
**Style-based Point Generator with Adversarial Rendering for Point Cloud Completion**
- Homepage: https://alphapav.github.io/SpareNet/
- Paper: https://arxiv.org/abs/2103.02535
- Code: https://github.com/microsoft/SpareNet
# 3D重建(3D Reconstruction)
**Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection**
- Paper: http://arxiv.org/abs/2106.07852
- Code: https://github.com/TencentYoutuResearch/3DFaceReconstruction-LAP
**Fully Understanding Generic Objects: Modeling, Segmentation, and Reconstruction**
- Paper: https://arxiv.org/abs/2104.00858
- Code: None
**NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video**
- Homepage: https://zju3dv.github.io/neuralrecon/
- Paper(Oral): https://arxiv.org/abs/2104.00681
- Code: https://github.com/zju3dv/NeuralRecon
# 6D位姿估计(6D Pose Estimation)
**FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose Estimation with Decoupled Rotation Mechanism**
- Paper(Oral): https://arxiv.org/abs/2103.07054
- Code: https://github.com/DC1991/FS-Net
**GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation**
- Paper: http://arxiv.org/abs/2102.12145
- code: https://git.io/GDR-Net
**FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation**
- Paper: https://arxiv.org/abs/2103.02242
- Code: https://github.com/ethnhe/FFB6D
# 相机姿态估计
**Back to the Feature: Learning Robust Camera Localization from Pixels to Pose**
- Paper: https://arxiv.org/abs/2103.09213
- Code: https://github.com/cvg/pixloc
# 深度估计(Depth Estimation)
**S2R-DepthNet: Learning a Generalizable Depth-specific Structural Representation**
- Paper(Oral): https://arxiv.org/abs/2104.00877
- Code: None
**Beyond Image to Depth: Improving Depth Prediction using Echoes**
- Homepage: https://krantiparida.github.io/projects/bimgdepth.html
- Paper: https://arxiv.org/abs/2103.08468
- Code: https://github.com/krantiparida/beyond-image-to-depth
**S3: Learnable Sparse Signal Superdensity for Guided Depth Estimation**
- Paper: https://arxiv.org/abs/2103.02396
- Code: None
**Depth from Camera Motion and Object Detection**
- Paper: https://arxiv.org/abs/2103.01468
- Code: https://github.com/griffbr/ODMD
- Dataset: https://github.com/griffbr/ODMD
# 立体匹配(Stereo Matching)
**A Decomposition Model for Stereo Matching**
- Paper: https://arxiv.org/abs/2104.07516
- Code: None
# 光流估计(Flow Estimation)
**Self-Supervised Multi-Frame Monocular Scene Flow**
- Paper: https://arxiv.org/abs/2105.02216
- Code: https://github.com/visinf/multi-mono-sf
**RAFT-3D: Scene Flow using Rigid-Motion Embeddings**
- Paper: https://arxiv.org/abs/2012.00726v1
- Code: None
**Learning Optical Flow From Still Images**
- Homepage: https://mattpoggi.github.io/projects/cvpr2021aleotti/
- Paper: https://mattpoggi.github.io/assets/papers/aleotti2021cvpr.pdf
- Code: https://github.com/mattpoggi/depthstillation
**FESTA: Flow Estimation via Spatial-Temporal Attention for Scene Point Clouds**
- Paper: https://arxiv.org/abs/2104.00798
- Code: None
# 车道线检测(Lane Detection)
**Focus on Local: Detecting Lane Marker from Bottom Up via Key Point**
- Paper: https://arxiv.org/abs/2105.13680
- Code: None
**Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection**
- Paper: https://arxiv.org/abs/2010.12035
- Code: https://github.com/lucastabelini/LaneATT
# 轨迹预测(Trajectory Prediction)
**Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction**
- Paper(Oral): https://arxiv.org/abs/2104.08277
- Code: None
# 人群计数(Crowd Counting)
**Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark**
- Paper: https://arxiv.org/abs/2105.02440
- Code: https://github.com/VisDrone/DroneCrowd
- Dataset: https://github.com/VisDrone/DroneCrowd
# 对抗样本(Adversarial Examples)
**Enhancing the Transferability of Adversarial Attacks through Variance Tuning**
- Paper: https://arxiv.org/abs/2103.15571
- Code: https://github.com/JHL-HUST/VT
**LiBRe: A Practical Bayesian Approach to Adversarial Detection**
- Paper: https://arxiv.org/abs/2103.14835
- Code: None
**Natural Adversarial Examples**
- Paper: https://arxiv.org/abs/1907.07174
- Code: https://github.com/hendrycks/natural-adv-examples
# 图像检索(Image Retrieval)
**StyleMeUp: Towards Style-Agnostic Sketch-Based Image Retrieval**
- Paper: https://arxiv.org/abs/2103.15706
- COde: None
**QAIR: Practical Query-efficient Black-Box Attacks for Image Retrieval**
- Paper: https://arxiv.org/abs/2103.02927
- Code: None
# 视频检索(Video Retrieval)
**On Semantic Similarity in Video Retrieval**
- Paper: https://arxiv.org/abs/2103.10095
- Homepage: https://mwray.github.io/SSVR/
- Code: https://github.com/mwray/Semantic-Video-Retrieval
# 跨模态检索(Cross-modal Retrieval)
**Cross-Modal Center Loss for 3D Cross-Modal Retrieval**
- Paper: https://arxiv.org/abs/2008.03561
- Code: https://github.com/LongLong-Jing/Cross-Modal-Center-Loss
**Thinking Fast and Slow: Efficient Text-to-Visual Retrieval with Transformers**
- Paper: https://arxiv.org/abs/2103.16553
- Code: None
**Revamping cross-modal recipe retrieval with hierarchical Transformers and self-supervised learning**
- Paper: https://www.amazon.science/publications/revamping-cross-modal-recipe-retrieval-with-hierarchical-transformers-and-self-supervised-learning
- Code: https://github.com/amzn/image-to-recipe-transformers
# Zero-Shot Learning
**Counterfactual Zero-Shot and Open-Set Visual Recognition**
- Paper: https://arxiv.org/abs/2103.00887
- Code: https://github.com/yue-zhongqi/gcm-cf
# 联邦学习(Federated Learning)
**FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space**
- Paper: https://arxiv.org/abs/2103.06030
- Code: https://github.com/liuquande/FedDG-ELCFS
# 视频插帧(Video Frame Interpolation)
**CDFI: Compression-Driven Network Design for Frame Interpolation**
- Paper: None
- Code: https://github.com/tding1/CDFI
**FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation**
- Homepage: https://tarun005.github.io/FLAVR/
- Paper: https://arxiv.org/abs/2012.08512
- Code: https://github.com/tarun005/FLAVR
# 视觉推理(Visual Reasoning)
**Transformation Driven Visual Reasoning**
- homepage: https://hongxin2019.github.io/TVR/
- Paper: https://arxiv.org/abs/2011.13160
- Code: https://github.com/hughplay/TVR
# 图像合成(Image Synthesis)
**GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields**
- Homepage: https://m-niemeyer.github.io/project-pages/giraffe/index.html
- Paper(Oral): https://arxiv.org/abs/2011.12100
- Code: https://github.com/autonomousvision/giraffe
- Demo: http://www.youtube.com/watch?v=fIaDXC-qRSg&vq=hd1080&autoplay=1
**Taming Transformers for High-Resolution Image Synthesis**
- Homepage: https://compvis.github.io/taming-transformers/
- Paper(Oral): https://arxiv.org/abs/2012.09841
- Code: https://github.com/CompVis/taming-transformers
# 视图合成(View Synthesis)
**Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes**
- Homepage: https://virtualhumans.mpi-inf.mpg.de/srf/
- Paper: https://arxiv.org/abs/2104.06935
**Self-Supervised Visibility Learning for Novel View Synthesis**
- Paper: https://arxiv.org/abs/2103.15407
- Code: None
**NeX: Real-time View Synthesis with Neural Basis Expansion**
- Homepage: https://nex-mpi.github.io/
- Paper(Oral): https://arxiv.org/abs/2103.05606
# 风格迁移(Style Transfer)
**Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality Artistic Style Transfer**
- Paper: https://arxiv.org/abs/2104.05376
- Code: https://github.com/PaddlePaddle/PaddleGAN/
# 布局生成(Layout Generation)
**LayoutTransformer: Scene Layout Generation With Conceptual and Spatial Diversity**
- Paper: None
- Code: None
**Variational Transformer Networks for Layout Generation**
- Paper: https://arxiv.org/abs/2104.02416
- Code: None
# Domain Generalization
**Generalization on Unseen Domains via Inference-time Label-Preserving Target Projections**
- Paper(Oral): https://openaccess.thecvf.com/content/CVPR2021/papers/Pandey_Generalization_on_Unseen_Domains_via_Inference-Time_Label-Preserving_Target_Projections_CVPR_2021_paper.pdf
- Code: https://github.com/VSumanth99/InferenceTimeDG
**Generalizable Person Re-identification with Relevance-aware Mixture of Experts**
- Paper: https://arxiv.org/abs/2105.09156
- Code: None
**RobustNet: Improving Domain Generalization in Urban-Scene Segmentation via Instance Selective Whitening**
- Paper: https://arxiv.org/abs/2103.15597
- Code: https://github.com/shachoi/RobustNet
**Adaptive Methods for Real-World Domain Generalization**
- Paper: https://arxiv.org/abs/2103.15796
- Code: None
**FSDR: Frequency Space Domain Randomization for Domain Generalization**
- Paper: https://arxiv.org/abs/2103.02370
- Code: None
# Domain Adaptation
**Curriculum Graph Co-Teaching for Multi-Target Domain Adaptation**
- Paper: https://arxiv.org/abs/2104.00808
- Code: None
**Domain Consensus Clustering for Universal Domain Adaptation**
- Paper: http://reler.net/papers/guangrui_cvpr2021.pdf
- Code: https://github.com/Solacex/Domain-Consensus-Clustering
# Open-Set
**Towards Open World Object Detection**
- Paper(Oral): https://arxiv.org/abs/2103.02603
- Code: https://github.com/JosephKJ/OWOD
**Exemplar-Based Open-Set Panoptic Segmentation Network**
- Homepage: https://cv.snu.ac.kr/research/EOPSN/
- Paper: https://arxiv.org/abs/2105.08336
- Code: https://github.com/jd730/EOPSN
**Learning Placeholders for Open-Set Recognition**
- Paper(Oral): https://arxiv.org/abs/2103.15086
- Code: None
# Adversarial Attack
**IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for Visual Object Tracking**
- Paper: https://arxiv.org/abs/2103.14938
- Code: https://github.com/VISION-SJTU/IoUattack
# "人-物"交互(HOI)检测
**HOTR: End-to-End Human-Object Interaction Detection with Transformers**
- Paper: https://arxiv.org/abs/2104.13682
- Code: None
**Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information**
- Paper: https://arxiv.org/abs/2103.05399
- Code: https://github.com/hitachi-rd-cv/qpic
**Reformulating HOI Detection as Adaptive Set Prediction**
- Paper: https://arxiv.org/abs/2103.05983
- Code: https://github.com/yoyomimi/AS-Net
**Detecting Human-Object Interaction via Fabricated Compositional Learning**
- Paper: https://arxiv.org/abs/2103.08214
- Code: https://github.com/zhihou7/FCL
**End-to-End Human Object Interaction Detection with HOI Transformer**
- Paper: https://arxiv.org/abs/2103.04503
- Code: https://github.com/bbepoch/HoiTransformer
# 阴影去除(Shadow Removal)
**Auto-Exposure Fusion for Single-Image Shadow Removal**
- Paper: https://arxiv.org/abs/2103.01255
- Code: https://github.com/tsingqguo/exposure-fusion-shadow-removal
# 虚拟换衣(Virtual Try-On)
**Parser-Free Virtual Try-on via Distilling Appearance Flows**
**基于外观流蒸馏的无需人体解析的虚拟换装**
- Paper: https://arxiv.org/abs/2103.04559
- Code: https://github.com/geyuying/PF-AFN
# 标签噪声(Label Noise)
**A Second-Order Approach to Learning with Instance-Dependent Label Noise**
- Paper(Oral): https://arxiv.org/abs/2012.11854
- Code: https://github.com/UCSC-REAL/CAL
# 视频稳像(Video Stabilization)
**Real-Time Selfie Video Stabilization**
- Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Yu_Real-Time_Selfie_Video_Stabilization_CVPR_2021_paper.pdf
- Code: https://github.com/jiy173/selfievideostabilization
# 数据集(Datasets)
**Tracking Pedestrian Heads in Dense Crowd**
- Homepage: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sundararaman_Tracking_Pedestrian_Heads_in_Dense_Crowd_CVPR_2021_paper.html
- Code1: https://github.com/Sentient07/HeadHunter
- Code2: https://github.com/Sentient07/HeadHunter%E2%80%93T
- Dataset: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
**Part-aware Panoptic Segmentation**
- Paper: https://arxiv.org/abs/2106.06351
- Code: https://github.com/tue-mps/panoptic_parts
- Dataset: https://github.com/tue-mps/panoptic_parts
**Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos**
- Homepage: https://www.yasamin.page/hdnet_tiktok
- Paper(Oral): https://arxiv.org/abs/2103.03319
- Code: https://github.com/yasaminjafarian/HDNet_TikTok
- Dataset: https://www.yasamin.page/hdnet_tiktok#h.jr9ifesshn7v
**High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network**
- Paper: https://arxiv.org/abs/2105.09188
- Code: https://github.com/csjliang/LPTN
- Dataset: https://github.com/csjliang/LPTN
**Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark**
- Paper: https://arxiv.org/abs/2105.02440
- Code: https://github.com/VisDrone/DroneCrowd
- Dataset: https://github.com/VisDrone/DroneCrowd
**Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets**
- Homepage: https://fidler-lab.github.io/efficient-annotation-cookbook/
- Paper(Oral): https://arxiv.org/abs/2104.12690
- Code: https://github.com/fidler-lab/efficient-annotation-cookbook
论文下载链接:
**ViP-DeepLab: Learning Visual Perception with Depth-aware Video Panoptic Segmentation**
- Paper: https://arxiv.org/abs/2012.05258
- Code: https://github.com/joe-siyuan-qiao/ViP-DeepLab
- Dataset: https://github.com/joe-siyuan-qiao/ViP-DeepLab
**Learning To Count Everything**
- Paper: https://arxiv.org/abs/2104.08391
- Code: https://github.com/cvlab-stonybrook/LearningToCountEverything
- Dataset: https://github.com/cvlab-stonybrook/LearningToCountEverything
**Semantic Image Matting**
- Paper: https://arxiv.org/abs/2104.08201
- Code: https://github.com/nowsyn/SIM
- Dataset: https://github.com/nowsyn/SIM
**Towards Fast and Accurate Real-World Depth Super-Resolution: Benchmark Dataset and Baseline**
- Homepage: http://mepro.bjtu.edu.cn/resource.html
- Paper: https://arxiv.org/abs/2104.06174
- Code: None
**Visual Semantic Role Labeling for Video Understanding**
- Homepage: https://vidsitu.org/
- Paper: https://arxiv.org/abs/2104.00990
- Code: https://github.com/TheShadow29/VidSitu
- Dataset: https://github.com/TheShadow29/VidSitu
**VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild**
- Homepage: https://www.vspwdataset.com/
- Paper: https://www.vspwdataset.com/CVPR2021__miao.pdf
- GitHub: https://github.com/sssdddwww2/vspw_dataset_download
**Sewer-ML: A Multi-Label Sewer Defect Classification Dataset and Benchmark**
- Homepage: https://vap.aau.dk/sewer-ml/
- Paper: https://arxiv.org/abs/2103.10619
**Sewer-ML: A Multi-Label Sewer Defect Classification Dataset and Benchmark**
- Homepage: https://vap.aau.dk/sewer-ml/
- Paper: https://arxiv.org/abs/2103.10895
**Nutrition5k: Towards Automatic Nutritional Understanding of Generic Food**
- Paper: https://arxiv.org/abs/2103.03375
- Dataset: None
**Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges**
- Homepage: https://github.com/QingyongHu/SensatUrban
- Paper: http://arxiv.org/abs/2009.03137
- Code: https://github.com/QingyongHu/SensatUrban
- Dataset: https://github.com/QingyongHu/SensatUrban
**When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework**
- Paper(Oral): https://arxiv.org/abs/2103.01520
- Code: https://github.com/Hzzone/MTLFace
- Dataset: https://github.com/Hzzone/MTLFace
**Depth from Camera Motion and Object Detection**
- Paper: https://arxiv.org/abs/2103.01468
- Code: https://github.com/griffbr/ODMD
- Dataset: https://github.com/griffbr/ODMD
**There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge**
- Homepage: http://rl.uni-freiburg.de/research/multimodal-distill
- Paper: https://arxiv.org/abs/2103.01353
- Code: http://rl.uni-freiburg.de/research/multimodal-distill
**Scan2Cap: Context-aware Dense Captioning in RGB-D Scans**
- Paper: https://arxiv.org/abs/2012.02206
- Code: https://github.com/daveredrum/Scan2Cap
- Dataset: https://github.com/daveredrum/ScanRefer
**There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge**
- Paper: https://arxiv.org/abs/2103.01353
- Code: http://rl.uni-freiburg.de/research/multimodal-distill
- Dataset: http://rl.uni-freiburg.de/research/multimodal-distill
# 其他(Others)
**Fast and Accurate Model Scaling**
- Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Dollar_Fast_and_Accurate_Model_Scaling_CVPR_2021_paper.html
- Code: https://github.com/facebookresearch/pycls
**Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos**
- Homepage: https://www.yasamin.page/hdnet_tiktok
- Paper(Oral): https://arxiv.org/abs/2103.03319
- Code: https://github.com/yasaminjafarian/HDNet_TikTok
- Dataset: https://www.yasamin.page/hdnet_tiktok#h.jr9ifesshn7v
**Omnimatte: Associating Objects and Their Effects in Video**
- Homepage: https://omnimatte.github.io/
- Paper(Oral): https://arxiv.org/abs/2105.06993
- Code: https://omnimatte.github.io/#code
**Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets**
- Homepage: https://fidler-lab.github.io/efficient-annotation-cookbook/
- Paper(Oral): https://arxiv.org/abs/2104.12690
- Code: https://github.com/fidler-lab/efficient-annotation-cookbook
**Motion Representations for Articulated Animation**
- Paper: https://arxiv.org/abs/2104.11280
- Code: https://github.com/snap-research/articulated-animation
**Deep Lucas-Kanade Homography for Multimodal Image Alignment**
- Paper: https://arxiv.org/abs/2104.11693
- Code: https://github.com/placeforyiming/CVPR21-Deep-Lucas-Kanade-Homography
**Skip-Convolutions for Efficient Video Processing**
- Paper: https://arxiv.org/abs/2104.11487
- Code: None
**KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control**
- Homepage: http://tomasjakab.github.io/KeypointDeformer
- Paper(Oral): https://arxiv.org/abs/2104.11224
- Code: https://github.com/tomasjakab/keypoint_deformer/
**Learning To Count Everything**
- Paper: https://arxiv.org/abs/2104.08391
- Code: https://github.com/cvlab-stonybrook/LearningToCountEverything
- Dataset: https://github.com/cvlab-stonybrook/LearningToCountEverything
**SOLD2: Self-supervised Occlusion-aware Line Description and Detection**
- Paper(Oral): https://arxiv.org/abs/2104.03362
- Code: https://github.com/cvg/SOLD2
**Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware Regression**
- Homepage: https://li-wanhua.github.io/POEs/
- Paper: https://arxiv.org/abs/2103.13629
- Code: https://github.com/Li-Wanhua/POEs
**LEAP: Learning Articulated Occupancy of People**
- Paper: https://arxiv.org/abs/2104.06849
- Code: None
**Visual Semantic Role Labeling for Video Understanding**
- Homepage: https://vidsitu.org/
- Paper: https://arxiv.org/abs/2104.00990
- Code: https://github.com/TheShadow29/VidSitu
- Dataset: https://github.com/TheShadow29/VidSitu
**UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles**
- Paper: https://arxiv.org/abs/2104.00946
- Code: https://github.com/SUTDCV/UAV-Human
**Video Prediction Recalling Long-term Motion Context via Memory Alignment Learning**
- Paper(Oral): https://arxiv.org/abs/2104.00924
- Code: None
**Fully Understanding Generic Objects: Modeling, Segmentation, and Reconstruction**
- Paper: https://arxiv.org/abs/2104.00858
- Code: None
**Towards High Fidelity Face Relighting with Realistic Shadows**
- Paper: https://arxiv.org/abs/2104.00825
- Code: None
**BRepNet: A topological message passing system for solid models**
- Paper(Oral): https://arxiv.org/abs/2104.00706
- Code: None
**Visually Informed Binaural Audio Generation without Binaural Audios**
- Homepage: https://sheldontsui.github.io/projects/PseudoBinaural
- Paper: None
- GitHub: https://github.com/SheldonTsui/PseudoBinaural_CVPR2021
- Demo: https://www.youtube.com/watch?v=r-uC2MyAWQc
**Exploring intermediate representation for monocular vehicle pose estimation**
- Paper: None
- Code: https://github.com/Nicholasli1995/EgoNet
**Tuning IR-cut Filter for Illumination-aware Spectral Reconstruction from RGB**
- Paper(Oral): https://arxiv.org/abs/2103.14708
- Code: None
**Invertible Image Signal Processing**
- Paper: https://arxiv.org/abs/2103.15061
- Code: https://github.com/yzxing87/Invertible-ISP
**Video Rescaling Networks with Joint Optimization Strategies for Downscaling and Upscaling**
- Paper: https://arxiv.org/abs/2103.14858
- Code: None
**SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D Sequences**
- Paper: https://arxiv.org/abs/2103.14898
- Code: None
**Embedding Transfer with Label Relaxation for Improved Metric Learning**
- Paper: https://arxiv.org/abs/2103.14908
- Code: None
**Picasso: A CUDA-based Library for Deep Learning over 3D Meshes**
- Paper: https://arxiv.org/abs/2103.15076
- Code: https://github.com/hlei-ziyan/Picasso
**Meta-Mining Discriminative Samples for Kinship Verification**
- Paper: https://arxiv.org/abs/2103.15108
- Code: None
**Cloud2Curve: Generation and Vectorization of Parametric Sketches**
- Paper: https://arxiv.org/abs/2103.15536
- Code: None
**TrafficQA: A Question Answering Benchmark and an Efficient Network for Video Reasoning over Traffic Events**
- Paper: https://arxiv.org/abs/2103.15538
- Code: https://github.com/SUTDCV/SUTD-TrafficQA
**Abstract Spatial-Temporal Reasoning via Probabilistic Abduction and Execution**
- Homepage: http://wellyzhang.github.io/project/prae.html
- Paper: https://arxiv.org/abs/2103.14230
- Code: None
**ACRE: Abstract Causal REasoning Beyond Covariation**
- Homepage: http://wellyzhang.github.io/project/acre.html
- Paper: https://arxiv.org/abs/2103.14232
- Code: None
**Confluent Vessel Trees with Accurate Bifurcations**
- Paper: https://arxiv.org/abs/2103.14268
- Code: None
**Few-Shot Human Motion Transfer by Personalized Geometry and Texture Modeling**
- Paper: https://arxiv.org/abs/2103.14338
- Code: https://github.com/HuangZhiChao95/FewShotMotionTransfer
**Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks**
- Homepage: https://paschalidoud.github.io/neural_parts
- Paper: None
- Code: https://github.com/paschalidoud/neural_parts
**Knowledge Evolution in Neural Networks**
- Paper(Oral): https://arxiv.org/abs/2103.05152
- Code: https://github.com/ahmdtaha/knowledge_evolution
**Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning**
- Paper: https://arxiv.org/abs/2103.02148
- Code: https://github.com/guopengf/FLMRCM
**SGP: Self-supervised Geometric Perception**
- Oral
- Paper: https://arxiv.org/abs/2103.03114
- Code: https://github.com/theNded/SGP
**Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning**
- Paper: https://arxiv.org/abs/2103.02148
- Code: https://github.com/guopengf/FLMRCM
**Diffusion Probabilistic Models for 3D Point Cloud Generation**
- Paper: https://arxiv.org/abs/2103.01458
- Code: https://github.com/luost26/diffusion-point-cloud
**Scan2Cap: Context-aware Dense Captioning in RGB-D Scans**
- Paper: https://arxiv.org/abs/2012.02206
- Code: https://github.com/daveredrum/Scan2Cap
- Dataset: https://github.com/daveredrum/ScanRefer
**There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge**
- Paper: https://arxiv.org/abs/2103.01353
- Code: http://rl.uni-freiburg.de/research/multimodal-distill
- Dataset: http://rl.uni-freiburg.de/research/multimodal-distill
# 待添加(TODO)
- [重磅!腾讯优图20篇论文入选CVPR 2021](https://mp.weixin.qq.com/s/McAtOVh0osWZ3uppEoHC8A)
- [MePro团队三篇论文被CVPR 2021接收](https://mp.weixin.qq.com/s/GD5Zb6u_MQ8GZIAGeCGo3Q)
# 不确定中没中(Not Sure)
**CT Film Recovery via Disentangling Geometric Deformation and Photometric Degradation: Simulated Datasets and Deep Models**
- Paper: none
- Code: https://github.com/transcendentsky/Film-Recovery
**Toward Explainable Reflection Removal with Distilling and Model Uncertainty**
- Paper: none
- Code: https://github.com/ytpeng-aimlab/CVPR-2021-Toward-Explainable-Reflection-Removal-with-Distilling-and-Model-Uncertainty
**DeepOIS: Gyroscope-Guided Deep Optical Image Stabilizer Compensation**
- Paper: none
- Code: https://github.com/lhaippp/DeepOIS
**Exploring Adversarial Fake Images on Face Manifold**
- Paper: none
- Code: https://github.com/ldz666666/Style-atk
**Uncertainty-Aware Semi-Supervised Crowd Counting via Consistency-Regularized Surrogate Task**
- Paper: none
- Code: https://github.com/yandamengdanai/Uncertainty-Aware-Semi-Supervised-Crowd-Counting-via-Consistency-Regularized-Surrogate-Task
**Temporal Contrastive Graph for Self-supervised Video Representation Learning**
- Paper: none
- Code: https://github.com/YangLiu9208/TCG
**Boosting Monocular Depth Estimation Models to High-Resolution via Context-Aware Patching**
- Paper: none
- Code: https://github.com/ouranonymouscvpr/cvpr2021_ouranonymouscvpr
**Fast and Memory-Efficient Compact Bilinear Pooling**
- Paper: none
- Code: https://github.com/cvpr2021kp2/cvpr2021kp2
**Identification of Empty Shelves in Supermarkets using Domain-inspired Features with Structural Support Vector Machine**
- Paper: none
- Code: https://github.com/gapDetection/cvpr2021
**Estimating A Child's Growth Potential From Cephalometric X-Ray Image via Morphology-Aware Interactive Keypoint Estimation**
- Paper: none
- Code: https://github.com/interactivekeypoint2020/Morph
https://github.com/ShaoQiangShen/CVPR2021
https://github.com/gillesflash/CVPR2021
https://github.com/anonymous-submission1991/BaLeNAS
https://github.com/cvpr2021dcb/cvpr2021dcb
https://github.com/anonymousauthorCV/CVPR2021_PaperID_8578
https://github.com/AldrichZeng/FreqPrune
https://github.com/Anonymous-AdvCAM/Anonymous-AdvCAM
https://github.com/ddfss/datadrive-fss