# CVQE **Repository Path**: QuContractor/CVQE ## Basic Information - **Project Name**: CVQE - **Description**: Quantum snake algorithm: Collective variational quantum eigensolvers for quantum chemistry - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-03-24 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Quantum snake algorithm: * This is the source code for the paper: Dan-Bo Zhang and Tao Yin, Collective optimization for variational quantum eigensolvers, [Phys. Rev. A **101**, 032311(2020).](https://link.aps.org/doi/10.1103/PhysRevA.101.032311) ([arXiv: 1910.14030](https://arxiv.org/abs/1910.14030)) ### Collective variational quantum eigensolvers (CVQE) for quantum chemistry We propose a hybrid quantum-classical algorithm that can provide collective optimization for the VQE to solve a group of related Hamiltonians more efficiently. A brief introduction for VQE can be found in [QuContractor's github repository.](https://github.com/QuContractor/VQE_tutorial/) ### Simulate molecules with varied bond lengths energies We simulated different molecules (H2, LiH, HeH+) with CVQE. Numeral simulations show that the CVQE exhibits clear collective behavior in the optimization process of updating parameters. The numerical simulations are mostly performed by using the [Huawei HiQ simulator framework](https://hiq.huaweicloud.com/). * The calculation for H2 can be found in [CVQE_H2](https://github.com/QuContractor/CVQE/blob/master/H2/snake_VQE_H2_pjq.ipynb), and [CVQE_H2 with IBM Qiskit](https://github.com/QuContractor/CVQE/blob/master/H2/snake_VQE_H2_IBM.ipynb) * The calculation for LiH can be found in [CVQE_LiH](https://github.com/QuContractor/CVQE/blob/master/LiH/snake_VQE_LiH.ipynb) * The calculation for HeH+ can be found in [CVQE_HeH+](https://github.com/QuContractor/CVQE/blob/master/HeH%2B/snake_VQE_HeH.ipynb) ### Avoid local minimum local_mini The snake algorithm gives rise to collective motion of parameters of different tasks that can avoid being trapped in local minimums. The example with H2 can be found in [CVQE_H2](https://github.com/QuContractor/CVQE/blob/master/H2/snake_VQE_H2_2theta.ipynb). ### Cite: @article{PhysRevA.101.032311, title = {Collective optimization for variational quantum eigensolvers}, author = {Zhang, Dan-Bo and Yin, Tao}, journal = {Phys. Rev. A}, volume = {101}, issue = {3}, pages = {032311}, numpages = {8}, year = {2020}, month = {Mar}, publisher = {American Physical Society}, doi = {10.1103/PhysRevA.101.032311}, url = {https://link.aps.org/doi/10.1103/PhysRevA.101.032311} }