# SCRN **Repository Path**: RomanticWithoutStatus/SCRN ## Basic Information - **Project Name**: SCRN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-03-16 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SCRN Code repository for our paper "Stacked Cross Refinement Network for Edge-Aware Salient Object Detection", ICCV 2019 poster. [Paper](http://openaccess.thecvf.com/content_ICCV_2019/papers/Wu_Stacked_Cross_Refinement_Network_for_Edge-Aware_Salient_Object_Detection_ICCV_2019_paper.pdf) and [supplementary material](http://openaccess.thecvf.com/content_ICCV_2019/supplemental/Wu_Stacked_Cross_Refinement_ICCV_2019_supplemental.pdf) are available. # Framework ![image](https://github.com/wuzhe71/SCAN/blob/master/figure/framework.png) # Experiments 1. Results on traditional datasets ![results1](https://github.com/wuzhe71/SCAN/blob/master/figure/results1.png) 2. Results on SOC (attribute-based performance, structure simalarity scores), more comparison can be found in [SOC Leaderboard](http://dpfan.net/SOCBenchmark/) ![results3](https://github.com/wuzhe71/SCAN/blob/master/figure/results3.png) # Usage 1. Requirements * pytorch 0.40+ * scipy 2. Clone the repo ``` git clone https://github.com/wuzhe71/SCRN.git cd SCRN ``` 3. Train/Test * Train * Download datasets: [DUTS](http://saliencydetection.net/duts/), [DUT-OMRON](http://saliencydetection.net/dut-omron/), [ECSSD](http://www.cse.cuhk.edu.hk/leojia/projects/hsaliency/dataset.html), [HKU-IS](https://i.cs.hku.hk/~gbli/deep_saliency.html), [PASCAL-S](http://www.cbi.gatech.edu/salobj/), [THUR15K](https://mmcheng.net/gsal/), [SOC](http://dpfan.net/SOCBenchmark/) * Set your dataset path, then ``` python train_SCRN.py ``` * We only use multi-scale traing for data agumentation, and the lr is set as 0.002. If you change to single-scale training, the lr should better change to 0.005. * Test * Download the pre-trained model from [google drive](https://drive.google.com/open?id=1PkGX9R-uTYpWBKX0lZRkE2qvvpz1-IiG) or [baidu yun](https://pan.baidu.com/s/1Gm-YptzsVnHU0a6YkdjQaQ) (code: ilhx), and put it in './model/'. This model is only trained on the training set of DUTS and tested on other datasets, including SOC and test set of DUTS. Set your dataset path, then ``` python test_SCRN.py ``` * You can also download the pre-computed saliency maps from [google drive](https://drive.google.com/open?id=1gRis5weSxuv9w6EZ23MPAnyDe-hUx07L) or [baidu yun](https://pan.baidu.com/s/1VHl_pWvbZGeAKgMwqFEHsw) (code: 8mty). * The saliency maps of SCRN and compared models in SOC validation set can be downloaded from [google drive](https://drive.google.com/open?id=1gjNtzkxCspiVJOoCU3e-wSz0cP02NuaZ) or [baidu yun](https://pan.baidu.com/s/1FwloUNqf-zEVSSeW6IoFcQ) (code: giow). # Citation ``` @InProceedings{Wu_2019_ICCV, author = {Wu, Zhe and Su, Li and Huang, Qingming}, title = {Stacked Cross Refinement Network for Edge-Aware Salient Object Detection}, booktitle = {The IEEE International Conference on Computer Vision (ICCV)}, month = {October}, year = {2019} } ``` # Contact Us If you have any question, please contact us (zhe.wu@vipl.ict.ac.cn).