# DeepLab-V1-PyTorch **Repository Path**: SaintEgg/DeepLab-V1-PyTorch ## Basic Information - **Project Name**: DeepLab-V1-PyTorch - **Description**: deeplabv1 - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-11-04 - **Last Updated**: 2022-02-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DeepLab-V1-PyTorch Code for ICLR 2015 deeplab-v1 paper ["Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs"](http://arxiv.org/pdf/1412.7062.pdf), backbone is deeplab-largeFOV. ## Config - python 3.7 / pytorch 1.2.0 - pydensecrf - opencv ## Datasets - [Pascal VOC 2012 Dataset](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/) - extract 'VOCtrainval_11-May-2012.tar' to 'VOCdevkit/' - [Pascal VOC 2012 Augment Dataset](https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/data/pascal) - I have download it, 'VOCdevkit/SegmentationClassAug.zip', you show extract it to 'VOCdevkit/VOC2012/ Finally, it should like this ``` /VOCdevkit └── VOC2012 ├── Annotations ├── ImageSets ├── JPEGImages ├── SegmentationObject └── SegmentationClass └── SegmentationClassAug ``` ## Performance ### Compore with paper
Train set Eval set CRF? Code Pixel
Accuracy
Mean
Accuracy
Mean IoU FreqW IoU
trainaug
val DeepLab-LargeFOV - - 62.25 -
Ours-step 90.20 80.92 62.34 83.58
DeepLab-CRF-LargeFOV - - 67.64 -
Ours-step 92.23 79.99 67.58 86.32
e.g. We use ImageNet-1000 to train a classification task for backbone DeepLab-LargeFOV(VGG16)。 ### Learning rate policy
Train set Eval set CRF? Code Pixel
Accuracy
Mean
Accuracy
Mean IoU FreqW IoU
trainaug val Ours-step 90.20 80.92 62.34 83.58
Ours-poly 91.24 80.29 64.838 85.00
Ours-poly2 91.35 81.61 65.44 85.26
Ours-step 92.23 79.99 67.58 86.32
Ours-poly 92.65 79.92 68.72 86.98
Ours-poly2 92.89 80.39 69.60 87.35
e.g. The learning rate policy of "step" and "poly", mentioned by [deeplab v2](http://arxiv.org/pdf/1606.00915.pdf). Ours-poly2 means to add scale method to dataset augment. ## Usage ### Train ``` python main.py --type=train ``` ### Test without CRF ``` python main.py --type=test ``` with CRF ``` python main.py --type=test --use_crf ``` ### Evaluate ``` python evalate.py ``` ## References 1. Liang-Chieh Chen*, George Papandreou*, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. (*equal contribution). Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. ICLR, 2015.
[Project](http://liangchiehchen.com/projects/DeepLab.html) / [Code](https://bitbucket.org/aquariusjay/deeplab-public-ver2) / [arXiv paper](http://arxiv.org/pdf/1412.7062.pdf) 2. [deeplab-v2-pytorch](https://github.com/kazuto1011/deeplab-pytorch)